LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Schiemer, J.; Spalek, L. J.; Saxena, S. S.; Panagopoulos, C.; Katsufuji, T.; Carpenter, M. A.
Publisher: IOP Publishing
Languages: English
Types: Article
Subjects: sub-03, Condensed Matter - Materials Science
structural, magnetic or ferroelectric order parameters is extremely important. Here resonant ultrasound spectroscopy has been used to investigate strain coupling effects, as well as possible additional phase transitions, through their influence on elastic and anelastic relaxations that occur as a function of temperature between 2 and 300 K and with applied magnetic field up to 14 T. Antiferromagnetic ordering is accompanied by acoustic loss and softening, and a weak magnetoelastic effect is also associated with the change in magnetization direction below . Changes in loss due to the influence of magnetic field suggest the existence of magnetic defects which couple with strain and may play a role in pinning of ferroelastic twin walls. MAC acknowledges support from NERC and EPSRC (grants NE/B505738/1 and EP/I036079/1, respectively). CP acknowledges financial support in Greece through FP7-REGPOT-2012-2013-1, and in Singapore through Award No. NRF-CRP-4-2008-04 of the Competitive Research Programme. LJS acknowledges the support of the National Science Centre (NCN) through grant MAESTRO No. DEC-2012/04/A/ST3/00342. Dr Albert Migliori (Los Alamos National Laboratory) is thanked for invaluable assistance in creating the RUS system with in-situ magnetic field. Tony Dennis (University of Cambridge) collected the SQUID data. This is the final version of the article. It first appeared at http://dx.doi.org/10.1209/0295-5075/109/57004

Share - Bookmark

Funded by projects

  • RCUK | Elasticity of ferroic and ...

Cite this article