Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Vladimirova, Anna; Patskovsky, Yury; Fedorov, Alexander A.; Bonanno, Jeffrey B.; Fedorov, Elena V.; Toro, Rafael; Hillerich, Brandan; Seidel, Ronald D.; Richards, Nigel G. J.; Almo, Steven C.; Raushel, Frank M. (2015)
Publisher: American Chemical Society
Journal: Journal of the American Chemical Society
Languages: English
Types: Article
Subjects: QD, Article
5-Carboxyvanillate decarboxylase (LigW) catalyzes the conversion of 5-carboxyvanillate to vanillate in the biochemical pathway for the degradation of lignin. This enzyme was shown to require Mn2+ for catalytic activity and the kinetic constants for the decarboxylation of 5-carboxyvanillate by the enzymes from Sphingomonas paucimobilis SYK-6 (kcat = 2.2 s–1 and kcat/Km = 4.0 × 104 M–1 s–1) and Novosphingobium aromaticivorans (kcat = 27 s–1 and kcat/Km = 1.1 × 105 M–1 s–1) were determined. The three-dimensional structures of both enzymes were determined in the presence and absence of ligands bound in the active site. The structure of LigW from N. aromaticivorans, bound with the substrate analogue, 5-nitrovanillate (Kd = 5.0 nM), was determined to a resolution of 1.07 Å. The structure of this complex shows a remarkable enzyme-induced distortion of the nitro-substituent out of the plane of the phenyl ring by approximately 23°. A chemical reaction mechanism for the decarboxylation of 5-carboxyvanillate by LigW was proposed on the basis of the high resolution X-ray structures determined in the presence ligands bound in the active site, mutation of active site residues, and the magnitude of the product isotope effect determined in a mixture of H2O and D2O. In the proposed reaction mechanism the enzyme facilitates the transfer of a proton to C5 of the substrate prior to the decarboxylation step.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (2) Bugg, T. D. H.; Ahmad, M.; Hardiman, E. M.; Rahmanpour, R. Nat. Prod. Rep. 2011, 28, 1883−1896.
    • (3) Tobimatsu, Y.; Chen, F.; Nakashima, J.; Escamilla-Treviño, L. L.; Jackson, L.; Dixon, R. A.; Ralph, J. Plant Cell 2013, 25, 2587−2600.
    • (4) Masai, E.; Katayama, Y.; Fukuda, M. Biosci., Biotechnol., Biochem. 2007, 71, 1−15.
    • (5) Seibert, C. M.; Raushel, F. M. Biochemistry 2005, 44, 6383−6391.
    • (6) Holm, L.; Sander, C. Proteins: Struct., Funct., Genet. 1997, 28, 72− 82.
    • (7) Toth, K.; Amyes, T. L.; Wood, B. M.; Chan, K.; Gerlt, J. A.; Richard, J. P. J. Am. Chem. Soc. 2010, 132, 7018−7024.
    • (8) Amyes, T. L.; Wood, B. M.; Chan, K.; Gerlt, J. A.; Richard, J. P. J. Am. Chem. Soc. 2008, 130, 1574−1575.
    • (9) Funihashi, M.; Ishida, T.; Kuroda, S.; Kotra, L. P.; Pai, E. F.; Miki, K. J. J. Am. Chem. Soc. 2013, 135, 17432−17443.
    • (10) Gato, M.; Hayashi, H.; Miyahara, I.; Hirotsu, K.; Yoshida, M.; Oikawa, T. J. Biol. Chem. 2006, 281, 34365−34373.
    • (11) Xu, S.; Li, W.; Zhu, J.; Wang, R.; Li, Z.; Xu, G.; Ding, J. Cell Res. 2013, 23, 1296−1309.
    • (12) Martynowski, D.; Eyobo, Y.; Li, T.; Yang, K.; Liu, A.; Zhang, H. Biochemistry 2006, 45, 10412−10421.
    • (13) Kluger, R.; Howe, G. W.; Mundle, S. O. C. Adv. Phys. Org. Chem. 2013, 47, 85−128.
    • (14) Moral, M. E.G.; Tu, C.; Richards, N. G. J.; Silverman, D. N. Anal. Biochem. 2011, 418, 73−77.
    • (15) Radzicka, A.; Wolfenden, R. Science 1995, 267, 90−93.
    • (16) Neumann, P.; Tittmann, K. Curr. Opin. Struct. Biol. 2014, 29, 122−133.
    • (17) Petsko, G. A.; Ringe, D. Curr. Opin. Chem. Biol. 2000, 4, 89−94.
    • (18) Vocadlo, D. J.; Davies, G. J.; Laine, R.; Withers, S. G. Nature 2001, 412, 835−838.
    • (19) Bacik, J. P.; Whitworth, G. E.; Stubbs, K. A.; Vocadlo, D. J.; Mark, B. L. Chem. Biol. 2012, 19, 1471−1482.
    • (20) Asztalos, P.; Parthier, C.; Golbik, R.; Kleinschmidt, M.; Hübner, G.; Weiss, M. S.; Friedemann, R.; Wille, G.; Tittmann, K. Biochemistry 2007, 46, 12037−12052.
    • (21) Ludtke, S.; Neumann, P.; Erixon, K. M.; Leeper, F. J.; Kluger, R.; Ficner, R.; Tittman, K. Nat. Chem. 2013, 5, 762−767.
    • (22) Lehwess-Litzmann, A.; Neumann, P.; Pathier, C.; Ludtke, S.; Golbik, R.; Ricner, R.; Tittmann, K. Nat. Chem. Biol. 2011, 7, 678− 684.
    • (23) Milic, D.; Demidkina, T. V.; Faleev, N. G.; Phillips, R. S.; Matkovic-Calogovic, D.; Anstson, A. A. J. Am. Chem. Soc. 2011, 133, 16468−16476.
    • (24) Kiss, L. E.; Ferreira, H. S.; Torrao, L.; Bonifaćio, M. J.; Palma, P.
    • N.; Soares-da-Silva, P.; Learmonth, D. A. J. Med. Chem. 2010, 53, 3396−3411.
    • (25) Otwinowski, Z.; Minor, W. In Methods in Enzymology; Carter, C.
    • W. J., Sweet, R. M., Abelson, J. N., Simon, M. I., Eds.; Academic Press: New York, 1997; pp 307−326.
    • (26) Long, F.; Vagin, A.; Young, P.; Murshudov, G. N. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2008, D64, 125−132.
    • (27) Emsley, P.; Cowtan, K. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, D60, 2126−2132.
    • (28) Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; GrosseKunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R.
    • J.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2011, D66, 213−221.
    • (29) Lamzin, V. S.; Wilson, K. S. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1993, D49, 129−147.
    • (30) Hooft, R. W.; Vriend, G.; Sander, C.; Abola, F. Nature 1996, 381, 272−273.
    • (31) Chen, V. B.; Arrendall, W. B.; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, D66, 12−21.
    • (32) Collaborative Computational Project Number 4 The CCP4 Suit: Programs for Protein Crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1994, 50, 760−763.
    • (33) Delano, W. L. The PyMOL Molecular Graphics System; Delano Scientific: San Carlos, CA, 2002.
    • (34) Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1997, D53, 240−255.
    • (35) Kabsch, W. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, D66, 125−132.
    • (36) Bruker APEX2, SADABS, XPREP and SAINT-Plus; Bruker AXS Inc.: Madison, WI, 2004. WinGX.
    • (37) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112−122.
    • (38) Farrugia, L. J. J. Appl. Crystallogr. 2012, 45, 849−854.
    • (39) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriquez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466−470.
    • (40) Williams, J. W.; Morrison, J. F. Methods Enzymol. 1979, 63, 437−467.
    • (41) Cook, P. F.; Cleland, W. W. In Enzyme Kinetics and Mechanism; Garland Science, 2007; p 203.
    • (42) Kręzėl, A.; Bal, W. J. Inorg. Biochem. 2004, 98, 161−166.
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    2dvtProtein Data Bank

Share - Bookmark

Cite this article