Languages: English
Types: Article
Subjects: QA, High Energy Physics  Theory
Classified by OpenAIRE into
arxiv: High Energy Physics::Theory
Identifiers:doi:10.1007/JHEP09(2013)008
Within the context of the weakly coupled E 8 × E 8 heterotic string, we study the hidden sector of heterotic standard model compactifications to fourdimensions. Specifically, we present a class of hidden sector vector bundles — composed of the direct sum of line bundles only — that, together with an effective bulk fivebrane, renders the heterotic standard model entirely N = 1 supersymmetric. Two explicit hidden sectors are constructed and analyzed in this context; one with the gauge group E 7 × U(1) arising from a single line bundle and a second with an SO(12) × U(1) × U(1) gauge group constructed from the direct sum of two line bundles. Each hidden sector bundle is shown to satisfy all requisite physical constraints within a finite region of the Kähler cone. We also clarify that the first Chern class of the line bundles need not be even in our context, as has often been imposed in the model building literature.

The results below are discovered through our pilot algorithms. Let us know how we are doing!
 [1] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, \Heterotic String Theory. 1. The Free Heterotic String," Nucl. Phys. B256 (1985) 253. 1
 [2] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, \Heterotic String Theory. 2. The Interacting Heterotic String," Nucl. Phys. B267 (1986) 75. 1
 [3] P. Horava and E. Witten, \Heterotic and type I string dynamics from eleven dimensions," Nucl. Phys. B460 (1996) 506{524, hepth/9510209. 1
 [4] P. Horava and E. Witten, \Elevendimensional supergravity on a manifold with boundary," Nucl.Phys. B475 (1996) 94{114, hepth/9603142. 1
 [5] A. Lukas, B. A. Ovrut, and D. Waldram, \On the fourdimensional e ective action of strongly coupled heterotic string theory," Nucl. Phys. B532 (1998) 43{82, hepth/9710208. 1
 [6] A. Lukas, B. A. Ovrut, and D. Waldram, \The tendimensional e ective action of strongly coupled heterotic string theory," Nucl. Phys. B540 (1999) 230{246, hepth/9801087. 1
 [7] A. Lukas, B. A. Ovrut, and D. Waldram, \Nonstandard embedding and vebranes in heterotic M theory," Phys.Rev. D59 (1999) 106005, hepth/9808101. 1, 3.1
 [8] A. Lukas, B. A. Ovrut, K. Stelle, and D. Waldram, \Heterotic M theory in vedimensions," Nucl.Phys. B552 (1999) 246{290, hepth/9806051. 1, 3.1
 [9] A. Lukas, B. A. Ovrut, K. Stelle, and D. Waldram, \The Universe as a domain wall," Phys.Rev. D59 (1999) 086001, hepth/9803235. 1, 3.1
 [10] S. K. Donaldson, \Anti selfdual YangMills connections over complex algebraic surfaces and stable vector bundles," Proc. London Math. Soc. (3) 50 (1985), no. 1, 1{26. 1
 [11] K. Uhlenbeck and S.T. Yau, \On the existence of hermitianYangMills connections in stable vector bundles," Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257{S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). 1
 [12] E. Witten, \Strong coupling expansion of CalabiYau compacti cation," Nucl.Phys. B471 (1996) 135{158, hepth/9602070. 1
 [13] B. R. Greene, K. H. Kirklin, P. J. Miron, and G. G. Ross, \A Superstring Inspired Standard Model," Phys. Lett. B180 (1986) 69. 1
 [14] B. R. Greene, K. H. Kirklin, P. J. Miron, and G. G. Ross, \A Three Generation Superstring Model. 1. Compacti cation And Discrete Symmetries," Nucl. Phys. B278 (1986) 667. 1
 [15] B. R. Greene, K. H. Kirklin, P. J. Miron, and G. G. Ross, \A Three Generation Superstring Model. 2. Symmetry Breaking And The LowEnergy Theory," Nucl. Phys. B292 (1987) 606. 1
 [16] T. Matsuoka and D. Suematsu, \Realistic Models From The E8 Superstring Theory," Prog. Theor. Phys. 76 (1986) 886. 1
 [17] B. R. Greene, K. H. Kirklin, P. J. Miron, and G. G. Ross, \273 Yukawa Couplings For a Three Generation Superstring Model," Phys. Lett. B192 (1987) 111. 1
 [18] V. Braun, Y.H. He, B. A. Ovrut, and T. Pantev, \The Exact MSSM spectrum from string theory," JHEP 0605 (2006) 043, hepth/0512177. 1, 2
 [19] V. Braun, Y.H. He, and B. A. Ovrut, \Stability of the minimal heterotic standard model bundle," JHEP 0606 (2006) 032, hepth/0602073. 1, 2, 3.2
 [20] V. Braun, Y.H. He, and B. A. Ovrut, \Yukawa couplings in heterotic standard models," JHEP 0604 (2006) 019, hepth/0601204. 1
 [21] J. Gray, A. Lukas, and B. Ovrut, \Perturbative antibrane potentials in heterotic Mtheory," Phys.Rev. D76 (2007) 066007, hepth/0701025. 1
 [22] J. Gray, A. Lukas, and B. Ovrut, \Flux, gaugino condensation and antibranes in heterotic Mtheory," Phys.Rev. D76 (2007) 126012, 0709.2914. 1
 [24] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, \De Sitter vacua in string theory," Phys.Rev. D68 (2003) 046005, hepth/0301240. 1
 [25] F. A. Bogomolov, \Holomorphic tensors and vector bundles on projective manifolds," Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 6, 1227{1287, 1439. 1
 [26] M. R. Douglas, R. Reinbacher, and S.T. Yau, \Branes, bundles and attractors: Bogomolov and beyond," math/0604597. 1
 [27] B. Andreas and G. Curio, \Spectral Bundles and the DRYConjecture," J.Geom.Phys. 62 (2012) 800{803, 1012.3858. 1
 [28] B. Andreas and G. Curio, \On the Existence of Stable bundles with prescribed Chern classes on CalabiYau threefolds," 1104.3435. 1
 [29] R. Blumenhagen, G. Honecker, and T. Weigand, \Loopcorrected compacti cations of the heterotic string with line bundles," JHEP 0506 (2005) 020, hepth/0504232. 1, 3.3, 3.3, 3.4, 3.4
 [30] R. Blumenhagen, G. Honecker, and T. Weigand, \NonAbelian brane worlds: The Heterotic string story," JHEP 0510 (2005) 086, hepth/0510049. 1, 3.4
 [31] R. Blumenhagen, S. Moster, and T. Weigand, \Heterotic GUT and standard model vacua from simply connected CalabiYau manifolds," Nucl.Phys. B751 (2006) 186{221, hepth/0603015. 1, 3.4
 [32] R. Blumenhagen, S. Moster, R. Reinbacher, and T. Weigand, \Massless Spectra of Three Generation U(N) Heterotic String Vacua," JHEP 0705 (2007) 041, hepth/0612039. 1, 3.3, 3.4
 [33] T. Weigand, \Compacti cations of the heterotic string with unitary bundles," Fortsch.Phys. 54 (2006) 963{1077. 1, 3.4
 [34] L. B. Anderson, J. Gray, A. Lukas, and B. Ovrut, \Stability Walls in Heterotic Theories," JHEP 0909 (2009) 026, 0905.1748. 1
 [35] L. B. Anderson, J. Gray, and B. Ovrut, \Yukawa Textures From Heterotic Stability Walls," JHEP 1005 (2010) 086, 1001.2317. 1
 [36] L. B. Anderson, J. Gray, A. Lukas, and E. Palti, \Two Hundred Heterotic Standard Models on Smooth CalabiYau Threefolds," Phys.Rev. D84 (2011) 106005, 1106.4804. 1
 [37] L. B. Anderson, J. Gray, A. Lukas, and E. Palti, \Heterotic Line Bundle Standard Models," JHEP 1206 (2012) 113, 1202.1757. 1
 [38] L. B. Anderson, J. Gray, A. Lukas, and E. Palti, \Heterotic standard models from smooth CalabiYau threefolds," PoS CORFU2011 (2011) 096. 1
 [39] R. Donagi, A. Lukas, B. A. Ovrut, and D. Waldram, \Nonperturbative vacua and particle physics in M theory," JHEP 9905 (1999) 018, hepth/9811168. 1
 [40] R. Donagi, A. Lukas, B. A. Ovrut, and D. Waldram, \Holomorphic vector bundles and nonperturbative vacua in M theory," JHEP 9906 (1999) 034, hepth/9901009. 1
 [41] R. Donagi, B. A. Ovrut, T. Pantev, and D. Waldram, \Standard models from heterotic M theory," Adv.Theor.Math.Phys. 5 (2002) 93{137, hepth/9912208. 1
 [42] R. Donagi, B. A. Ovrut, T. Pantev, and R. Reinbacher, \SU(4) instantons on CalabiYau threefolds with Z(2) x Z(2) fundamental group," JHEP 0401 (2004) 022, hepth/0307273. 1
 [43] V. Braun, B. A. Ovrut, T. Pantev, and R. Reinbacher, \Elliptic CalabiYau threefolds with Z(3) x Z(3) Wilson lines," JHEP 0412 (2004) 062, hepth/0410055. 1, 2.1
 [44] R. Donagi, Y.H. He, B. A. Ovrut, and R. Reinbacher, \The Spectra of heterotic standard model vacua," JHEP 0506 (2005) 070, hepth/0411156. 1
 [45] C. Schoen, \On ber products of rational elliptic surfaces with section," Math. Z. 197 (1988), no. 2, 177{199. 2.1
 [46] B. A. Ovrut, T. Pantev, and R. Reinbacher, \Torus bered CalabiYau threefolds with nontrivial fundamental group," JHEP 0305 (2003) 040, hepth/0212221. 2.1
 [47] V. Braun, M. Kreuzer, B. A. Ovrut, and E. Scheidegger, \Worldsheet Instantons, Torsion Curves, and NonPerturbative Superpotentials," Phys. Lett. B649 (2007) 334{341, hepth/0703134. 2.1
 [48] V. Braun, M. Kreuzer, B. A. Ovrut, and E. Scheidegger, \Worldsheet instantons and torsion curves. Part A: Direct computation," JHEP 10 (2007) 022, hepth/0703182. 2.1
 [49] V. Braun, M. Kreuzer, B. A. Ovrut, and E. Scheidegger, \Worldsheet Instantons and Torsion Curves, Part B: Mirror Symmetry," JHEP 10 (2007) 023, arXiv:0704.0449 [hepth]. 2.1
 [50] T. L. Gomez, S. Lukic, and I. Sols, \Constraining the Kahler moduli in the heterotic standard model," Commun.Math.Phys. 276 (2007) 1{21, hepth/0512205. 2.1
 [51] M. B. Green, J. H. Schwarz, and E. Witten, \Superstring Theory. Vol. 1: Introduction,". Cambridge, Uk: Univ. Pr. ( 1987) 469 P. ( Cambridge Monographs On Mathematical Physics). 2.2, 3.1
 [52] M. B. Green, J. H. Schwarz, and E. Witten, \Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies And Phenomenology,". Cambridge, Uk: Univ. Pr. ( 1987) 596 P. ( Cambridge Monographs On Mathematical Physics). 2.2, 3.1
 [53] R. Blumenhagen, G. Honecker, and T. Weigand, \Supersymmetric (non)Abelian bundles in the Type I and SO(32) heterotic string," JHEP 0508 (2005) 009, hepth/0507041. 3.3
 [54] J. Distler and E. Sharpe, \Heterotic compacti cations with principal bundles for general groups and general levels," Adv.Theor.Math.Phys. 14 (2010) 335{398, hepth/0701244. 2
 [55] J. Distler and B. R. Greene, \Aspects of (2,0) String Compacti cations," Nucl.Phys. B304 (1988) 1. A.2
 [56] D. Freed, \Determinants, Torsion, and Strings," Commun.Math.Phys. 107 (1986) 483{513. A.2
 [57] E. Witten, \Global Anomalies in String Theory,". 5

No related research data.

No similar publications.