You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
Within the context of the weakly coupled E 8 × E 8 heterotic string, we study the hidden sector of heterotic standard model compactifications to four-dimensions. Specifically, we present a class of hidden sector vector bundles — composed of the direct sum of line bundles only — that, together with an effective bulk five-brane, renders the heterotic standard model entirely N = 1 supersymmetric. Two explicit hidden sectors are constructed and analyzed in this context; one with the gauge group E 7 × U(1) arising from a single line bundle and a second with an SO(12) × U(1) × U(1) gauge group constructed from the direct sum of two line bundles. Each hidden sector bundle is shown to satisfy all requisite physical constraints within a finite region of the Kähler cone. We also clarify that the first Chern class of the line bundles need not be even in our context, as has often been imposed in the model building literature.
[1] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, \Heterotic String Theory. 1. The Free Heterotic String," Nucl. Phys. B256 (1985) 253. 1
[2] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, \Heterotic String Theory. 2. The Interacting Heterotic String," Nucl. Phys. B267 (1986) 75. 1
[3] P. Horava and E. Witten, \Heterotic and type I string dynamics from eleven dimensions," Nucl. Phys. B460 (1996) 506{524, hep-th/9510209. 1
[6] A. Lukas, B. A. Ovrut, and D. Waldram, \The ten-dimensional e ective action of strongly coupled heterotic string theory," Nucl. Phys. B540 (1999) 230{246, hep-th/9801087. 1
[7] A. Lukas, B. A. Ovrut, and D. Waldram, \Nonstandard embedding and ve-branes in heterotic M theory," Phys.Rev. D59 (1999) 106005, hep-th/9808101. 1, 3.1
[8] A. Lukas, B. A. Ovrut, K. Stelle, and D. Waldram, \Heterotic M theory in ve-dimensions," Nucl.Phys. B552 (1999) 246{290, hep-th/9806051. 1, 3.1
[9] A. Lukas, B. A. Ovrut, K. Stelle, and D. Waldram, \The Universe as a domain wall," Phys.Rev. D59 (1999) 086001, hep-th/9803235. 1, 3.1
[10] S. K. Donaldson, \Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles," Proc. London Math. Soc. (3) 50 (1985), no. 1, 1{26. 1
[11] K. Uhlenbeck and S.-T. Yau, \On the existence of hermitian-Yang-Mills connections in stable vector bundles," Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257{S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). 1
[12] E. Witten, \Strong coupling expansion of Calabi-Yau compacti cation," Nucl.Phys. B471 (1996) 135{158, hep-th/9602070. 1
[13] B. R. Greene, K. H. Kirklin, P. J. Miron, and G. G. Ross, \A Superstring Inspired Standard Model," Phys. Lett. B180 (1986) 69. 1
[14] B. R. Greene, K. H. Kirklin, P. J. Miron, and G. G. Ross, \A Three Generation Superstring Model. 1. Compacti cation And Discrete Symmetries," Nucl. Phys. B278 (1986) 667. 1
[15] B. R. Greene, K. H. Kirklin, P. J. Miron, and G. G. Ross, \A Three Generation Superstring Model. 2. Symmetry Breaking And The Low-Energy Theory," Nucl. Phys. B292 (1987) 606. 1
[16] T. Matsuoka and D. Suematsu, \Realistic Models From The E8 Superstring Theory," Prog. Theor. Phys. 76 (1986) 886. 1
[17] B. R. Greene, K. H. Kirklin, P. J. Miron, and G. G. Ross, \273 Yukawa Couplings For a Three Generation Superstring Model," Phys. Lett. B192 (1987) 111. 1
[18] V. Braun, Y.-H. He, B. A. Ovrut, and T. Pantev, \The Exact MSSM spectrum from string theory," JHEP 0605 (2006) 043, hep-th/0512177. 1, 2
[19] V. Braun, Y.-H. He, and B. A. Ovrut, \Stability of the minimal heterotic standard model bundle," JHEP 0606 (2006) 032, hep-th/0602073. 1, 2, 3.2
[20] V. Braun, Y.-H. He, and B. A. Ovrut, \Yukawa couplings in heterotic standard models," JHEP 0604 (2006) 019, hep-th/0601204. 1
[21] J. Gray, A. Lukas, and B. Ovrut, \Perturbative anti-brane potentials in heterotic M-theory," Phys.Rev. D76 (2007) 066007, hep-th/0701025. 1
[22] J. Gray, A. Lukas, and B. Ovrut, \Flux, gaugino condensation and anti-branes in heterotic M-theory," Phys.Rev. D76 (2007) 126012, 0709.2914. 1
[24] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, \De Sitter vacua in string theory," Phys.Rev. D68 (2003) 046005, hep-th/0301240. 1
[25] F. A. Bogomolov, \Holomorphic tensors and vector bundles on projective manifolds," Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 6, 1227{1287, 1439. 1
[26] M. R. Douglas, R. Reinbacher, and S.-T. Yau, \Branes, bundles and attractors: Bogomolov and beyond," math/0604597. 1
[27] B. Andreas and G. Curio, \Spectral Bundles and the DRY-Conjecture," J.Geom.Phys. 62 (2012) 800{803, 1012.3858. 1
[28] B. Andreas and G. Curio, \On the Existence of Stable bundles with prescribed Chern classes on Calabi-Yau threefolds," 1104.3435. 1
[30] R. Blumenhagen, G. Honecker, and T. Weigand, \Non-Abelian brane worlds: The Heterotic string story," JHEP 0510 (2005) 086, hep-th/0510049. 1, 3.4
[31] R. Blumenhagen, S. Moster, and T. Weigand, \Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds," Nucl.Phys. B751 (2006) 186{221, hep-th/0603015. 1, 3.4
[32] R. Blumenhagen, S. Moster, R. Reinbacher, and T. Weigand, \Massless Spectra of Three Generation U(N) Heterotic String Vacua," JHEP 0705 (2007) 041, hep-th/0612039. 1, 3.3, 3.4
[34] L. B. Anderson, J. Gray, A. Lukas, and B. Ovrut, \Stability Walls in Heterotic Theories," JHEP 0909 (2009) 026, 0905.1748. 1
[35] L. B. Anderson, J. Gray, and B. Ovrut, \Yukawa Textures From Heterotic Stability Walls," JHEP 1005 (2010) 086, 1001.2317. 1
[36] L. B. Anderson, J. Gray, A. Lukas, and E. Palti, \Two Hundred Heterotic Standard Models on Smooth Calabi-Yau Threefolds," Phys.Rev. D84 (2011) 106005, 1106.4804. 1
[37] L. B. Anderson, J. Gray, A. Lukas, and E. Palti, \Heterotic Line Bundle Standard Models," JHEP 1206 (2012) 113, 1202.1757. 1
[38] L. B. Anderson, J. Gray, A. Lukas, and E. Palti, \Heterotic standard models from smooth Calabi-Yau three-folds," PoS CORFU2011 (2011) 096. 1
[39] R. Donagi, A. Lukas, B. A. Ovrut, and D. Waldram, \Nonperturbative vacua and particle physics in M theory," JHEP 9905 (1999) 018, hep-th/9811168. 1
[40] R. Donagi, A. Lukas, B. A. Ovrut, and D. Waldram, \Holomorphic vector bundles and nonperturbative vacua in M theory," JHEP 9906 (1999) 034, hep-th/9901009. 1
[41] R. Donagi, B. A. Ovrut, T. Pantev, and D. Waldram, \Standard models from heterotic M theory," Adv.Theor.Math.Phys. 5 (2002) 93{137, hep-th/9912208. 1
[42] R. Donagi, B. A. Ovrut, T. Pantev, and R. Reinbacher, \SU(4) instantons on Calabi-Yau threefolds with Z(2) x Z(2) fundamental group," JHEP 0401 (2004) 022, hep-th/0307273. 1
[47] V. Braun, M. Kreuzer, B. A. Ovrut, and E. Scheidegger, \Worldsheet Instantons, Torsion Curves, and Non-Perturbative Superpotentials," Phys. Lett. B649 (2007) 334{341, hep-th/0703134. 2.1
[48] V. Braun, M. Kreuzer, B. A. Ovrut, and E. Scheidegger, \Worldsheet instantons and torsion curves. Part A: Direct computation," JHEP 10 (2007) 022, hep-th/0703182. 2.1
[49] V. Braun, M. Kreuzer, B. A. Ovrut, and E. Scheidegger, \Worldsheet Instantons and Torsion Curves, Part B: Mirror Symmetry," JHEP 10 (2007) 023, arXiv:0704.0449 [hep-th]. 2.1
[50] T. L. Gomez, S. Lukic, and I. Sols, \Constraining the Kahler moduli in the heterotic standard model," Commun.Math.Phys. 276 (2007) 1{21, hep-th/0512205. 2.1
[51] M. B. Green, J. H. Schwarz, and E. Witten, \Superstring Theory. Vol. 1: Introduction,". Cambridge, Uk: Univ. Pr. ( 1987) 469 P. ( Cambridge Monographs On Mathematical Physics). 2.2, 3.1
[52] M. B. Green, J. H. Schwarz, and E. Witten, \Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies And Phenomenology,". Cambridge, Uk: Univ. Pr. ( 1987) 596 P. ( Cambridge Monographs On Mathematical Physics). 2.2, 3.1
[53] R. Blumenhagen, G. Honecker, and T. Weigand, \Supersymmetric (non-)Abelian bundles in the Type I and SO(32) heterotic string," JHEP 0508 (2005) 009, hep-th/0507041. 3.3