Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hoggard, Nigel; Roditi, Giles H (2016)
Publisher: The British Institute of Radiology.
Languages: English
Types: Article
Subjects: Review Article
There is growing evidence for the accumulation of gadolinium (Gd) in patients administered with intravenous Gd-based contrast agents, even in the absence of renal impairment. This review of the literature will discuss what has been found to date in cadaveric human studies, clinical studies of patients and from animal models. Evidence for the potential route of entry into the brain will be examined. The current state of knowledge of effects of Gd accumulation in the brain is discussed. We will then discuss what the possible implications may be for the choice of Gd-based contrast agents in clinical practice.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. European Medicines Agency. Assessment report for gadolinium-containing contrast agents 2010. In: Proced. No. EMEA/H/A-31/ 1097. [Accessed 21 April 2016]. Available from: http://www.ema.europa.eu/docs/en_ GB/document_library/Referrals_document/ gadolinium_31/WC500099538.pdf
    • 2. Do JG, Kim YB, Lee DG, Hwang JH. A case of delayed onset nephrogenic systemic fibrosis after gadolinium based contrast injection. Ann Rehabil Med 2012; 36: 880-6. doi: https://doi.org/10.5535/ arm.2012.36.6.880
    • 3. Thomson LK, Thomson PC, Kingsmore DB, Blessing K, Daly CD, Cowper SE, et al. Diagnosing nephrogenic systemic fibrosis in the post-FDA restriction era. J Magn Reson Imaging 2015; 41: 1268-71. doi: https://doi. org/10.1002/jmri.24664
    • 4. Sherry AD, Caravan P, Lenkinski RE. A primer on gadolinium chemistry. J Magn Reson Imaging 2009; 30: 1240-8. doi: https:// doi.org/10.1002/jmri.21966
    • 5. Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ, Ellen Campbell M, Hauschka PV, Hannigan RE, et al. Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 2009; 1: 479-88. doi: https://doi.org/10.1039/ b905145g
    • 6. White GW, Gibby WA, Tweedle MF. Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Invest Radiol 2006; 41: 272-8. doi: https://doi.org/10.1097/01. rli.0000186569.32408.95
    • 7. Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 2000; 356: 1000-1. doi: https://doi. org/10.1016/S0140-6736(00)02694-5
    • 8. Cowper SE. Nephrogenic systemic fibrosis: the nosological and conceptual evolution of nephrogenic fibrosing dermopathy. Am J Kidney Dis 2005; 46: 763-5. doi: https://doi. org/10.1053/j.ajkd.2005.08.008
    • 9. Grobner T. Gadolinium-a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 2006; 21: 1104-8. doi: https://doi.org/10.1093/ ndt/gfk062
    • 10. Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 2006; 17: 2359-62. doi: https://doi. org/10.1681/ASN.2006060601
    • 11. Collidge TA, Thomson PC, Mark PB, Traynor JP, Jardine AG, Morris ST, et al. Gadoliniumenhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology 2007; 245: 168-75. doi: https://doi.org/ 10.1148/radiol.2451070353
    • 12. Port M, Ide´e JM, Medina C, Robic C, Sabatou M, Corot C. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review. Biometals 2008; 21: 469-90. doi: https://doi.org/ 10.1007/s10534-008-9135-x
    • 13. Maramattom BV, Manno EM, Wijdicks EF, Lindell EP. Gadolinium encephalopathy in a patient with renal failure. Neurology 2005; 64: 1276-8. doi: https://doi.org/10.1212/01. WNL.0000156805.45547.6E
    • 14. Hui FK, Mullins M. Persistence of gadolinium contrast enhancement in CSF: a possible harbinger of gadolinium neurotoxicity? AJNR Am J Neuroradiol 2009; 30: E1. doi: https://doi.org/10.3174/ajnr.A1205
    • 15. Naganawa S, Taoka T. Contrast enhancement of perivascular spaces in the basal ganglia. Proc Int Soc Magn Reson Med 2016; 24: 0514.
    • 16. Wardlaw JM, Doubal F, Armitage P, Chappell F, Carpenter T, Muñoz Maniega S, et al. Lacunar stroke is associated with diffuse blood-brain barrier dysfunction. Ann Neurol 2009; 65: 194-202. doi: https://doi.org/ 10.1002/ana.21549
    • 17. Topakian R, Barrick TR, Howe FA, Markus HS. Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry 2010; 81: 192-7. doi: https://doi.org/10.1136/ jnnp.2009.172072
    • 18. Taheri S, Gasparovic C, Huisa BN, Adair JC, Edmonds E, Prestopnik J, et al. Blood-brain barrier permeability abnormalities in vascular cognitive impairment. Stroke 2011; 42: 2158-63. doi: https://doi.org/10.1161/ STROKEAHA.110.611731
    • 19. Wardlaw JM, Farrall A, Armitage PA, Carpenter T, Chappell F, Doubal F, et al. Changes in background blood-brain barrier integrity between lacunar and cortical ischemic stroke subtypes. Stroke 2008; 39: 1327-32. doi: https://doi.org/10.1161/ STROKEAHA.107.500124
    • 20. Heye AK, Culling RD, Valde´s Herna´ndez Mdel C, Thrippleton MJ, Wardlaw JM. Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. Neuroimage Clin 2014; 6: 262-74. doi: https://doi.org/10.1016/j. nicl.2014.09.002
    • 21. Pietsch H, Lengsfeld P, Steger-Hartmann T, Lo¨we A, Frenzel T, Hu¨tter J, et al. Impact of renal impairment on long-term retention of gadolinium in the rodent skin following the administration of gadolinium-based contrast agents. Invest Radiol 2009; 44: 226-33. doi: https://doi.org/10.1097/ RLI.0b013e3181998eb7
    • 22. Pietsch H, Lengsfeld P, Jost G, Frenzel T, Hu¨tter J, Sieber MA. Long-term retention of gadolinium in the skin of rodents following the administration of gadolinium-based contrast agents. Eur Radiol 2009; 19: 1417-24. doi: https://doi.org/10.1007/ s00330-008-1259-4
    • 23. Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol 2016; 51: 447-53. doi: https:// doi.org/10.1097/RLI.0000000000000252
    • 24. Larson KN, Gagnon AL, Darling MD, Patterson JW, Cropley TG. Nephrogenic systemic fibrosis manifesting a decade after exposure to gadolinium. JAMA Dermatol 2015; 151: 1117-20. doi: https://doi.org/ 10.1001/jamadermatol.2015.0976
    • 25. Popescu BF, Robinson CA, Rajput A, Rajput AH, Harder SL, Nichol H. Iron, copper, and zinc distribution of the cerebellum. Cerebellum 2009; 8: 74-9. doi: https://doi.org/ 10.1007/s12311-008-0091-3
    • 26. Feng L, Xiao H, He X, Li Z, Li F, Liu N, et al. Neurotoxicological consequence of longterm exposure to lanthanum. Toxicol Lett 2006; 165: 112-20. doi: https://doi.org/ 10.1016/j.toxlet.2006.02.003
    • 27. Uchino A, Noguchi T, Nomiyama K, Takase Y, Nakazono T, Nojiri J, et al. Manganese accumulation in the brain: MR imaging. Neuroradiology 2007; 49: 715-20. doi: https:// doi.org/10.1007/s00234-007-0243-z
    • 28. Selikhova M, Fedoryshyn L, Matviyenko Y, Komnatska I, Kyrylchuk M, Krolicki L, et al. Parkinsonism and dystonia caused by the illicit use of ephedrone-a longitudinal study. Mov Disord 2008; 23: 2224-31. doi: https:// doi.org/10.1002/mds.22290
    • 29. Docherty RJ. Gadolinium selectively blocks a component of calcium current in rodent neuroblastoma X glioma hybrid (NG108-15) cells. J Physiol 1988; 398: 33-47. doi: https://doi.org/10.1113/jphysiol.1988. sp017027
    • 30. Biagi BA, Enyeart JJ. Gadolinium blocks low- and high-threshold calcium currents in pituitary cells. Am J Physiol 1990; 259(3 Pt 1): C515-20.
    • 31. Birka M, Wentker KS, Lusmo¨ller E. Diagnosis of nephrogenic systemic fibrosis by means of elemental bioimaging and speciation analysis. Anal Chem 2015; 87: 3321-8. doi: https://doi. org/10.1021/ac504488k
    • 32. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 2015; 275: 772-82. doi: https://doi.org/ 10.1148/radiol.15150025
    • 33. Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J, et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 2015; 276: 228-32. doi: https://doi.org/10.1148/radiol.2015142690
    • 34. Xia D, Davis RL, Crawford JA, Abraham JL. Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy. Acta Radiol 2010; 51: 1126-36. doi: https://doi.org/10.3109/ 02841851.2010.515614
    • 35. Robert P, Lehericy S, Grand S, Violas X, Fretellier N, Ide´e JM, et al. T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadoliniumbased contrast agents in healthy rats: difference between linear and macrocyclic agents. Invest Radiol 2015; 50: 473-80. doi: https:// doi.org/10.1097/RLI.0000000000000181
    • 36. Jost G, Lenhard DC, Sieber MA, Lohrke J, Frenzel T, Pietsch H. Signal increase on unenhanced T1-weighted images in the rat brain after repeated, extended doses of gadolinium-based contrast agents. Comparison of linear and macrocyclic agents. Invest Radiol 2016; 51: 83-9. doi: https://doi.org/ 10.1097/RLI.0000000000000242
    • 37. Kartamihardja AAP, Nakajima T, Kameo S, Tsushima Y, Maebashi JP. Gadolinium deposition during normal glomerulus filtration rate. ECR 2015. doi: https://doi.org/10.1594/ ecr2015/C-1539
    • 38. Kanda T, Ishii K, Kawaguchi H. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014; 270: 834-41. doi: https://doi.org/10.1148/radiol.13131669
    • 39. Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J, Haruyama T, et al. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 2015; 275: 803-9. doi: https://doi.org/10.1148/radiol.14140364
    • 40. Huang DQ, Prince M, Shih G, Cao Y. Signal changes in dentate nuclei with 10 or more gadolinium-based contrast administrations: comparison of linear versus macrocytic contrast agents. ISMRM 23rd Annual Meeting & Exhibition 30 May to 5 June 2015 Toronto, ON, Canada.
    • 41. Errante Y, Cirimele V, Mallio CA, Di Lazzaro V, Zobel BB, Quattrocchi CC. Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Invest Radiol 2014; 49: 685-90. doi: https://doi.org/10.1097/ RLI.0000000000000072
    • 42. Quattrocchi CC, Mallio CA, Errante Y, Cirimele V, Carideo L, Ax A, et al. Gadodiamide and dentate nucleus T1 hyperintensity in patients with meningioma evaluated by multiple follow-up contrast-enhanced magnetic resonance examinations with no systemic interval therapy. Invest Radiol 2015; 50: 470-2. doi: https://doi.org/10.1097/ RLI.0000000000000154
    • 43. Ramalho J, Castillo M, AlObaidy M, Nunes RH, Ramalho M, Dale BM, et al. High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadoliniumbased contrast agents. Radiology 2015; 276: 836-44. doi: https://doi.org/10.1148/ radiol.2015150872
    • 44. Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium based contrast agent, gadobutrol. Eur Radiol 2016; 26: 807-15. doi: https://doi.org/10.1007/s00330-015-3879-9
    • 45. Radbruch A, Weberling LD, Kieslich PJ. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 2015; 275: 150337.
    • 46. Kinner S, Schubert TB, Rebsamen S, Bruce R, Reeder SB, Rowley HA. Deep brain nuclei T1 shortening after gadolinium in children: influence of radiation and chemotherapy. Proc Int Soc Magn Reson Med 2016; 24: 0509.
    • 47. Vatnehol SA, Groote IR, Larsson C, Kleppestø M, Vardal J, Bjørnerud A. T1 relaxometry indicate cerebral gadolinium retention after multiple administration of a macrocyclic Gd-based contrast agent: a retrospective study in 27 patients with glioblastoma multiforme. Proc Int Soc Magn Reson Med 2016; 24: 0510.
    • 48. Kuno H, Jara H, Buch K, Mills A, Quresh MM, Thayil N, et al. Regional and global assessment on relaxometric quantitative MRI in patients with previous administration of a linear gadolinium-based contrast agent. Proc Int Soc Magn Reson Med 2016; 24: 0515.
    • 49. Jost G, Lenhard D, Lohrke J, Frenzel T, Pietsch H. T1-weighted signal increase in the rat brain after multiple, high-dose administrations of gadolinium based contrast agents: comparison of linear and macrocyclic agents. Proc Int Soc Magn Reson Med 2016; 24: 0512.
    • 50. Calle D, Guadilla I, Lo´ pez-Larrubia P, Cerda´n S. Regional uptake and clearance of Gd(III) DTPA in the healthy adult mouse brain. Proc Int Soc Magn Reson Med 2016; 24: 0513.
    • 51. Agris J, Pietsch H, Balzer T. What evidence is there that gadobutrol causes increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W MRI in patients with RRMS? Eur Radiol 2016; 26: 816-17. doi: https://doi.org/10.1007/s00330- 015-4019-2
    • 52. Arlt S, Cepek L, Rustenbeck HH, Prange H, Reimers CD. Gadolinium encephalopathy due to accidental intrathecal administration of gadopentetate dimeglumine. J Neurol 2007; 254: 810-12. doi: https://doi.org/ 10.1007/s00415-006-0439-x
    • 53. Ray DE, Cavanagh JB, Nolan CC, Williams SC. Neurotoxic effects of gadopentetate dimeglumine: behavioral disturbance and morphology after intracerebroventricular injection in rats. AJNR Am J Neuroradiol 1996; 17: 365-73.
    • 54. Ray DE, Holton JL, Nolan CC, Cavanagh JB, Harpur ES. Neurotoxic potential of gadodiamide after injection into the lateral cerebral ventricle of rats. AJNR Am J Neuroradiol 1998; 19: 1455-62.
    • 55. Pietsch H, Frenzel T, Frisk A, Lenhard DC, Jost G, Sieber MA, et al. Gadolinium Deposition in the brain: pre-clinical investigation of differences in concentration, distribution and histology in animals after repeated administrations of linear and macrocyclic GBCAs. Proc Int Soc Magn Reson Med 2016; 24: 0511.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article