LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nejat, P.; Calautit, J.K.; Majid, M.Z.A.; Hughes, B.R.; Zeynali, I.; Jomehzadeh, F. (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
In buildings, 60% of the energy consumption is associated to Heating, Ventilation and Air-conditioning (HVAC) systems. One solution to reduce this share is the application of natural ventilation systems. Windcatcher and wing wall are two well-known techniques for natural ventilation which have been used in different regions. Nevertheless, in areas with low wind speed such as the tropical climate of Malaysia there is hesitation for application of natural ventilation systems. The integration of windcatcher with wing wall can potentially enhance the ventilation performance. However, this configuration was not looked into by pervious investigations thus, this study aims to address this research gap by first evaluating the effect of wing wall with various angles on the ventilation performance and second compare the performance of this new design with a conventional windcatcher. This research used two main investigative steps: experimental scaled wind tunnel testing and Computational Fluid Dynamics (CFD) simulation. Four reduced-scale models of two-sided windcatcher were tested in a low speed wind tunnel. Three models were integrated with wing wall in 30°, 45° and 60° incident angles and another windcatcher was a conventional two-sided windcatcher, which is typical in regions with predominant wind direction. The CFD validation against experiment showed good agreement. The best operation was observed in the windcatcher with 30° wing wall angle which could supply 910 l/s fresh air into the room in 2.5 m/s wind speed. Hence, the new design had 50% more ventilation performance comparing with conventional two-sided windcatcher in the same external wind speed. Finally, it was concluded that the new design satisfied requirements of ASHRAE 62.1.

Share - Bookmark

Cite this article