Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Battelli, Riccardo; Lombardi, Lara; Picciarelli, Piero; Lorenzi, Roberto; Frigerio, Lorenzo; Rogers, Hilary Joan (2014)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: QK
Senescence is a tightly regulated process and both compartmentalisation and regulated activation of degradative enzymes is critical to avoid premature cellular destruction. Proteolysis is a key process in senescent tissues, linked to disassembly of cellular contents and nutrient remobilisation. Cysteine proteases are responsible for most proteolytic activity in senescent petals, encoded by a gene family comprising both senescence-specific and senescence up-regulated genes. KDEL cysteine proteases are present in senescent petals of several species. Isoforms from endosperm tissue localise to ricinosomes: cytosol acidification following vacuole rupture results in ricinosome rupture and activation of the KDEL proteases from an inactive proform. Here data show that a Lilium longiflorum KDEL protease gene (LlCYP) is transcriptionally up-regulated, and a KDEL cysteine protease antibody reveals post-translational processing in senescent petals. Plants over-expressing LlCYP lacking the KDEL sequence show reduced growth and early senescence. Immunogold staining and confocal analyses indicate that in young tissues the protein is retained in the ER, while during floral senescence it is localised to the vacuole. Our data therefore suggest that the vacuole may be the site of action for at least this KDEL cysteine protease during tepal senescence.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [4] M.T. Smith, Y. Saks, J. van Staden, Ultrastructural changes in the petal of senescing flowers of Dianthus caryophyllus L., Ann. Bot. 69 (1992) 277-285.
    • [5] W.G. van Doorn, P.A. Balk, A.M. van Houwelingen, F.A. Hoeberichts, R.D. Hall, O. Vorst, C. van der Schoot, M.F. van Wordragen, Gene expression during anthesis and senescence in Iris flowers, Plant Mol. Biol. 53 (2003) 845-863.
    • [6] R. Battelli, L. Lombardi, H.J. Rogers, P. Picciarelli, R. Lorenzi, N. Ceccarelli, Changes in ultrastructure, protease and caspase-like activities during flower senescence in Lilium longiflorum, Plant Sci. 180 (2011) 716-725.
    • [7] C. Wagstaff, M.K. Leverentz, G. Griffiths, B. Thomas, U. Chanasut, A.D. Stead, H.J. Rogers, Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals, J. Exp. Bot. 53 (2002) 233-240.
    • [8] P. Stephenson, B. Rubinstein, Characterization of proteolytic activity during senescence in daylilies, Physiol. Plant.104 (1998) 463-473.
    • [9] J.R. Eason, D.J. Ryan, T.T. Pinckney, E.M. O'Donoghue, Programmed cell death during flower senescence: isolation and characterization of cysteine proteinases from Sandersonia aurantiaca, Funct. Plant Biol. 29 (2002) 1055-1064.
    • [10] C. Wagstaff, I. Bramke, E. Breeze, S. Thornber, L. Harrison, B. Thomas, V. Buchanan-Wollaston, A.D. Stead, H. J Rogers, A unique group of genes respond to cold drought stress in cut Alstroemeria flowers whereas ambient drought stress accelerates developmental expression patterns, J. Exp. Bot. 61 (2010) 2905-2921.
    • [11] A.M Price, D.F. Aros Orellana, R. Stevens, R. Acock, V. Buchanan-Wollaston, A.D. Stead, H.J. Rogers, A comparison of leaf and petal senescence in wallflowers (Erysimum linifolium) reveals common and distinct patterns of gene expression and physiology, Plant Physiol. 147 (2008) 1898-1912.
    • [12] M.L. Jones, G.S. Chaffin, J.R. Eason, D.G. Clark, Ethylene-sensitivity regulates proteolytic activity and cysteine protease gene expression in petunia corollas, J. Exp. Bot. 56 (2005) 2733-2744.
    • [13] E.P. Beers, A.M. Jones, A.W. Dickermann, The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis, Phytochemistry 65 (2004) 43-58.
    • [14] F.D. Guerrero, M. De la Calle, M.S. Reid, V. Valpuesta, Analysis of the expression of two thiolprotease genes from daylily (Hemerocallis spp.) during flower senescence, Plant Mol. Biol. 15 (1998) 11-26.
    • [15] M. Helm, M. Schmid, G. Hierl, K. Terneus, L. Tan, F. Lottspeich, M.J. Kieliszewski, C. Gietl, KDEL-Tailed cysteine endopeptidases involved in programmed cell death, intercalation of new cells, and dismantling of extensin scaffold, Am. J. Bot. 95 (2008) 1049-1062.
    • [16] M. Schmid, D. Simpson, C. Gietl, Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes, PNAS 96 (1999) 14159-14164.
    • [17] V. Valpuesta, N.E. Lange, C. Guerrero, M.S. Reid, Up-regulation of a cysteine protease accompanies the ethylene-insensitive senescence of daylily (Hemerocallis) flowers, Plant Mol. Biol. 28 (1995) 575-582.
    • [18] L. Lerslerwong, S. Ketsa, W.G. van Doorn, Protein degradation and peptidase activity during petal senescence in Dendrobium cv. Khao Sanan, Postharv. Biol. Tech. 52 (2009) 84-90.
    • [19] H.H. Mollenhauer, C. Totten, Studies on seeds: Microbodies, glyoxysomes, and ricinosomes of castor bean endosperm, Plant Physiol. 46 (1970) 794-799.
    • [20] E. L. Vigil, Cytochemical and developmental changes in microbodies (glyoxysomes) and related organelles of castor bean J. Cell Biol. 46 (1970), 435- 454.
    • [21] M. Schmid, D.J. Simpson, H. Sarioglu, F. Lottspeich, C. Gietl, The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum, PNAS 98 (2001) 5353- 5358.
    • [22] J.S. Greenwood, M. Helm, C. Gietl, Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development, PNAS 102 (2005) 2238-2243.
    • [23] A. Senatore, C.P. Trobacher, J.S. Greenwood, Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiol. 149 (2009) 775-790.
    • [24] T. Okamoto, T. Shimada, I. Hara-Nishimura, M. Nishimura, T. Minamikawa, Cterminal KDEL sequence of a KDEL-tailed cysteine proteinase (sulfhydrylendopeptidase) is involved in formation of KDEL vesicle and in efficient vacuolar transport of sulfhydryl-endopeptidase, Plant Physiol. 132 (2003) 1892-1900.
    • [25] E.L. Dempster, K.V. Pryor, D. Francis, J.E. Young, H.J. Rogers, Rapid DNA extraction from ferns for PCR-based analyses, Biotechniques 27 (1999) 66-68.
    • [26] T.A. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuc. Ac. Symp. Ser. 41 (1999) 95-98.
    • [27] K. Tamura, J. Dudley, M. Nei, S. Kumar, MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24 (2007) 1596- 1599.
    • [28] O. Emanuelsson, S. Brunak, G. von Heijne, H. Nielsen, Locating proteins in the cell using TargetP, SignalP, and related tools, Nature Prot. 2, (2007) 953-971.
    • [29] S. Rozen, H.J. Skaletsky, Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S eds. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, (2000) 365-386.
    • [30] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real time quantitative PCR and the 2-CT method. Methods 25 (2001), 402-408.
    • [31] E.S. Reynolds, The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol. 17 (1963) 208-212.
    • [32] P.R. Hunter, C.P. Craddock, S. Di Benedetto, L.M. Roberts, L. Frigerio, Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells, Plant Physiol. 145 (2007) 1371- 1382.
    • [33] S.J. Clough, A.F. Bent, Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana, Plant J. 16 (1998) 735-743.
    • [34] H. Batoko, H.Q. Zheng, C. Hawes, I. Moore, A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants, Plant Cell 12 (2000) 2201-2217.
    • [35] N.D. Rawlings, A.J. Barrett, Families of serine peptidases, Meth. Enzym. 244 (1994) 19-61.
    • [36] M. Schmid, D. Simpson, F. Kalousek, C. Gietl C, A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta 206 (1998) 466-475.
    • [37] K. Toyooka, T. Okamoto, T. Minamikawa, Mass transport of proform of a KDELtailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds, J. Cell Biol. 148 (2000) 453-464.
    • [38] G. Hierl, U. Vothknecht, C. Gietl, Programmed cell death in Ricinus and Arabidopsis: the function of KDEL cysteine peptidases in development. Physiol. Plantar. 145 (2012) 103-113.
    • [39] L. Xiang, E. Etxeberria, W. Van den Ende, Vacuolar protein sorting mechanisms in plants, FEBS J. 280 (2013) 979-993.
    • [40] N. Saitou, M. Nei, The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4 (1987) 406-425.
    • [41] J. Felsenstein, Confidence limits on phylogenies: An approach using the bootstrap, Evolution 39 (1985) 783-791.
    • [42] E. Zuckerkandl, L. Pauling L, Evolutionary divergence and convergence in proteins, in: Evolving Genes and Proteins, V. Bryson and H.J. Vogel eds. Academic Press, New York (1965) 97-166.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article