LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Waxman, D (2006)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: QA, QH301

Classified by OpenAIRE into

arxiv: Quantitative Biology::Populations and Evolution
Fisher's geometrical model of evolutionary adaptation has recently been used in a variety of contexts of interest to evolutionary biologists. The renewed interest in this model strongly motivates generalizations that make it a more realistic description of evolutionary adaptation. Previously, the distribution of mutant effects has, for analytical tractability, rather than biological realism, been taken as spherically symmetric. Here we substantially extend Fisher's model, by allowing a wider class of mutational distributions that incorporate mutational bias and more general deviations from spherical symmetry such as correlations between mutant effects. We also incorporate work on generalized fitness landscapes, thereby reducing the number of artificial assumptions underlying the model. The generalized model exhibits a substantially increased flexibility and a far richer underlying geometry. We find that the distribution characterizing selection coefficients of new mutations is expressed in terms of a number of geometrical invariants associated with mutation, selection and the parental phenotype.

Share - Bookmark

Cite this article