LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Castro-Alvaredo, O.; Fring, A.; Korff, C.; Miramontes, J. L. (2000)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: Condensed Matter, QA, QC, High Energy Physics - Theory
We apply the thermodynamic Bethe Ansatz to investigate the high energy behaviour of a class of scattering matrices which have recently been proposed to describe the Homogeneous sine-Gordon models related to simply laced Lie algebras. A characteristic feature is that some elements of the suggested S-matrices are not parity invariant and contain resonance shifts which allow for the formation of unstable bound states. From the Lagrangian point of view these models may be viewed as integrable perturbations of WZNW-coset models and in our analysis we recover indeed in the deep ultraviolet regime the effective central charge related to these cosets, supporting therefore the S-matrix proposal. For the $SU(3)_k$-model we present a detailed numerical analysis of the scaling function which exhibits the well known staircase pattern for theories involving resonance parameters, indicating the energy scales of stable and unstable particles. We demonstrate that, as a consequence of the interplay between the mass scale and the resonance parameter, the ultraviolet limit of the HSG-model may be viewed alternatively as a massless ultraviolet-infrared-flow between different conformal cosets. For $k=2$ we recover as a subsystem the flow between the tricritical Ising and the Ising model.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] C.N. Yang and C.P. Yang, Phys. Rev. 147 (1966) 303; J. Math. Phys. 10 (1969) 1115.
    • [2] Al.B. Zamolodchikov, Nucl. Phys. B342 (1990) 695; Nucl. Phys. B358 (1991) 497; Nucl. Phys. B366 (1991) 122.
    • [3] B. Schroer, T.T. Truong and P. Weisz, Phys. Lett. B63 (1976) 422; M. Karowski, H.J. Thun, T.T. Truong and P. Weisz, Phys. Lett. B67 (1977) 321; [7] E. Witten, Commun. Math. Phys. 92 (1984) 455;
    • [11] R. Ko¨berle and J.A. Swieca, Phys. Lett. 86B (1979) 209.
    • [12] Al.B. Zamolodchikov, Resonance Factorized Scattering and Roaming Trajectories, Preprint ENS-LPS-335 (1991); M.J. Martins, Phys. Rev. Lett. 69 (1992) 2461; Nucl. Phys. B394 (1993) 339; P. Dorey and F. Ravaninni, Int. J. Mod. Phys. A8 (1993) 873; Nucl. Phys. B406 (1993) 708.
    • [13] Al.B. Zamolodchikov, Nucl. Phys. B358 (1991) 524.
    • [14] A. Fring, C. Korff and B.J. Schulz, Nucl. Phys. B549 (1999) 579.
    • [15] A. Fring, C. Korff and B.J. Schulz, On the universal representation of the Scattering matrix of affine Toda field theory, hep-th/9907125 (to appear in Nucl. Phys. B)
    • [16] D.I. Olive, Nuovo Cimento 26 (1962) 73; G. Tak´acs and G. Watts, Nucl. Phys. B547 (1999) 538;
    • [17] G. Breit and E.P. Wigner, Phys. Rev. 49 (1936) 519;
    • [18] A.E. Arinshtein, V.A. Fateev, and A.B. Zamolodchikov, Phys. Lett. B87 (1979) 389; H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Nucl. Phys. B338 (1990) 689.
    • [19] A.N. Kirillov, J. Sov. Math. 47 (1989) 2450.
    • [20] V.V. Bazhanov and N. Reshetikhin, J. Phys. A23 (1990) 1477;
    • [25] K. Pohlmeyer, Commun. Math. Phys. 46 (1976) 207; F. Lund and T. Regge, Phys. Rev. D14 (1976) 1524; F. Lund, Phys. Rev. Lett. 38 (1977) 1175; B.S. Getmanov, JETP Lett. 25 (1977) 119.
    • [26] A.M. Tsvelik, Nucl. Phys. B305 (1988) 675; V.A. Fateev, Int. J. Mod. Phys. A6 (1991) 2109; V.A. Fateev and A.B. Zamolodchikov, Phys. Lett. B271 (1991) 91; L. Palla, Phys. Lett. B253 (1991) 342; N. Dorey and T.J. Hollowood, Nucl. Phys. B440 (1995) 215.
    • [27] Al.B. Zamolodchikov, Nucl. Phys. B358 (1991) 497; Nucl. Phys. B366 (1991) 122.
    • [28] Al.B. Zamolodchikov, Phys. Lett. B253 (1991) 391.
    • [29] T.R. Klassen and E. Melzer, Nucl. Phys. B338 (1990) 485; Nucl. Phys. B350 (1991) 635; Nucl. Phys. B370 (1992) 511.
    • [30] L. Lewin, Dilogarithms and associated functions (Macdonald, London, 1958); A.N. Kirillov and N. Reshetikhin, J. Phys. A20 (1987) 1587.
    • [31] M. Freeman, Phys. Lett. B261 (1991) 57; A. Fring, H.C. Liao and D.I. Olive, Phys. Lett. B266 (1991) 82.
    • [32] M. Fowler, Phys. Rev. B26 (1985) 2514.
    • [33] N.Yu. Reshetikhin and F.A. Smirnov, Commun. Math. Phys. 131 (1990) 157; P. Christe and J. Martins, Mod. Phys. Lett. A5 (1990) 2189; G. Delfino and G. Mussardo, Phys. Lett. B324 (1994) 40.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article