LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
O'Shea, Terence Anthony
Languages: English
Types: Doctoral thesis
Subjects: QC, QD
The work recorded in this thesis can be divided into three sections. The first section (chapter three) is concerned with essentially weak H-bonded anions of the type XH(02CR)-, where X- is a group 7 halide ion, and R is H, CH3, CF3 or CHC12. The IR spectrum of each of the se anions has been examined and complete assignments have been made in most cases. The relationships which exist in the series, whichare a direct result of their chemical similarities, are discussed in terms of the pKa values of the acid and base concerned.\ud \ud The second section (chapter four) deals with Type B hydrogen dicarboxylate salts of acetic acid and its halogenated derivatives. Their IR spectra have been examined at the temperature of liquid nitrogen and assignments have been made. The importance of low isotopic shifts is discussed and used as evidence for asymmetry in the potential energy surface of the proton. Secondary evidence from other techniques, viz. NQR, inelastic neutron scattering, Raman and Far IR spectroscopy, has been obtained which parallels and mconfirms the results from IR spectroscopy.\ud \ud Type A salts, which are thought to be examples of symmetric H-bonds, have been examined by the same techniques which were used for Type B salts. In particular their IR spectra have been examined and assigned for the first time. Attention is drawn to the low frequency of~OH and~OD, and to its high isotopic shift. The IR spectrum of Potassium hydrogen diaspirinate has been recorded, but not analysed in detail, and it is clear that it is similar to the much simpler IR spectrum of the Type A salts prepared in this work. The latter example represents a case where very recent and accurate neutron diffraction data is available and where it was suggested that ~OH is below l000cm. This evidence, together with work on Type A and B salts, has led to an idea of the shape of the potential energy well for the proton and deuterium in Type A salts which is based on a symmetric double minimum. A similar situation is suggested for the proposed symmetric cases of HC12-, and the differences from the HF2- system is made apparent in the text.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2.5 Low Temperature Infrared Cells lea) Liquid Ni tros;en m cell (b) Method of Operation 2(a) Liquid Helium Cell (b) Method of Operation (c) Transfer of Liquid Helium 2.6 Spectrometers (a) Infrared Spectra (b) Raman Spectra (c) Inelastic Neutron Scattering (d) Nuclear Magnetic Resonance Spectrometer ~ (e) Pure Nuclear Quadrupolar Resonace Spectromet er 1= p [.. + t
    • 22. J. A. Salthouse and T. C. Waddington. To be published.
    • 23. R. 1.1. Dieters, W. G. Evans, and D. H. McDaniel, Inorg. Ohem ,, 1968, L 1615.
    • 24. Wyckoff, Am. J. Sci., 1922, ~, 175.
    • 25. H. M. E. Cardwell, J. D. Dunitz and L. E. Orgel, J. Chern. Soc., 1953, 3740.
    • 26. S. W. Peterson andH. A. Levy, J. Chern. Phys., 1958,~, 948.
    • 27. G. Ferguson, J. G. Sime, J. C. Speakman, and R. Young, Chern. Corom 1968, ..2., 162. y
    • 28. D. Hadzi and A. Novak, Spect. Acta, 1962, 18, 1059.
    • 29. B. L. McGaw and J. A. Ibers, J. Chern. Phys., 1963, ~, 2677.
    • 30. D. HadZi and A. Novak, "IR Spectra of, and Hydrogen Bonding in, some acid salts of carboxylic acids", Ljubljana, 1960.
    • 31. W. FUller, J. Phys. Chern., 1959,2l, 1705.
    • 32. w. C. Hamilton and J. A. Ibers, Acta Cryst., 1963, 16, 1209.
    • 33. R. Blinc and D. Hadzi, J. Mol. Phys., 1958, 1, 391.
    • 34. R. M. Hill and S. K. Ichiki, J. Chern. Phys. , 1968, 1&, 838.
    • 35. J. A. Ibers, J. Chern. Phys., 1964, ,lill, 402.
    • 36. N. Sheppard in ref. 2 page 85.
    • 37. R. E. Rundle and 11. Parasol, J. Chern. Phys., 1952, gQ, 1487.
    • 38. K. Nakamoto, M. 1~rgoshes and R. E. Rundle, J.A.C.S., 1955,11, 6480.
    • 39. G. C. PimenteLand C. H. Sederho1dm. J. Chern. Phys., 1956, §;, 639. y
    • 40. R. Blinc, D. Hadzi and A. Novak, Zeit fur E1ekrochemie, 1960, ~, 567.
    • 41. H. Ratajczak and W. J. Orville-Thomas, J. Mol. Structure, 1967, ~, 449.
    • 42. S. Bratozv, D. Hadz..i,. and N. Sheppard, Spect.Acta, 1956, ~, 249.
    • 43. Y. Marech8.1 andA. Witkowski, J. Chern. Phys., 1968,~, 3697.
    • 44. C. Perchard and A. Novak, J. Chern. Fhys., 1968, ~, 3079.
    • 45. A. Novak and A. Lautie, Nature, 1967, 216, 1202. v
    • 71. R. B1inc and D. Hadzi, Spect. Acta, 1960, 16, 853.
    • 72. R. B1inc and D. HaaZi, Nature, 1966, 212, 1307.
    • 73. D. Ha~i, J. Chern. Soc., 1962, 5128.
    • 74. D. HadZi and N. Kobi10rov, J. Chern. Soc., (A)., 1966, 439.
    • 75. D. Ha~i, Boll. Sci. Bac. Chim. Ind. Bologna, 1963, 21, 23.
    • 76. R. D. Ellison andH. A. Levy, Acta Cryst., 1965,12, 260.
    • 77. G. E. Bacon andRe S. Pease, Proc. Roy. Soc. (London), 1953, A220, 397.
    • 78. G. E. Bacon andRe S. Pease, Proc. Roy. Soc. (London), 1955, A230, 359.
    • 79. D. HadZ"i, J. Chern. Phys., 1961, .2±, 1445.
    • 80. Y. Imry, I. Fe Lah , and E. Wiener, J. Chern. Pnys., 1965, It.2., 2332.
    • 81. J. A. Ibers, C. H. Holm, and C. R. Adams, Phy. Rev., 1961, 121, 1620.
    • 82. A. Benoit, Spect. Acta, 1963, 12, 2Q11.
    • 83. R. G. Snyder and J. A. Ibers, J. Chern. Phys., 1962, ]2, 1356.
    • 84. J. J. Rush and J. R. Ferraro, J. Chern. Phys., 1966, ~, 2496.
    • 85. J. M. Skinner and J. C. Spea.kman, J. Chern. Soc., 1951, 185.
    • 86. L. Manoj1ovic, Acta Cryst., 1968, B24, 326.
    • 87. J. M. Skinner, G. M. D. Steward and J. C. Speakman, J. Chern. Soc., 1954, 180.
    • 88. H. H. Mills and J. C. Speakman, J. Chern. Soc., 1961, 1164.
    • 89. R. F. Bryan, H. H. Mills and J. C. Speakman, J. Chern. Soc. , 1963, 4350.
    • 90. H. H. Mills and J. C. Speakman, J. Chern. Soc., 1963, 4355.
    • 91. L. Go1ic and J. C. Speakman, J. Chern. Soc., 1965, 2530.
    • 92. S. Grunva11 and R. F. Wenge1in, J. Chern. Soc (A)., 1967, 968.
    • 93. L. Manoj10vic and J. C. Speakman, J. Chern Soc., 1967, 971.
    • 94. D. R. McGregor and J. C. Speakman, J. Chern. Soc. CA), 1968, 2106.
    • 95. L. Go1ic and J. C. Speakman, J. Chern. Soc., 1963, 2521.
    • 120 R. L. Somorjai, Ph.D. Thesis, Princeton University, 1963 • a:~ss~,,~
    • 121 T. C. Waddington and F. Temme, Work in progress.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article