Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mold, Matthew; Shardlow, Emma; Exley, Christopher (2016)
Publisher: Nature Publishing Group
Journal: Scientific Reports
Languages: English
Types: Article
Subjects: QD, Article

Classified by OpenAIRE into

mesheuropmc: inorganic chemicals, complex mixtures
Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al3+ in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Gupta, A., Das, S., Schanen, B. & Seal, S. Adjuvants in micro- to nanoscale: current state and future direction. Nanomed. Nanobiotechnol. 8, 61-84 (2016).
    • 2. Reed, S. G., Orr, M. T. & Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 19, 1597-1608 (2013).
    • 3. Oleszycka, E. et al. IL-1α and inflammasome-independent IL-1β promote neutrophil infiltration following alum vaccination. FEBS J. 283, 9-24 (2016).
    • 4. Exley, C., Siesjö, P. & Eriksson, H. The immunobiology of aluminium adjuvants: how do they really work? Trends Immunol. 30, 103-109 (2010).
    • 5. Shaw, C. A. & Petrik, M. S. Aluminum hydroxide injections lead to motor decfiits and motor neuron degeneration. J. Inorg. Biochem . 103, 1555-1562 (2009).
    • 6. Tomljenovic, L. & Shaw, C. A. Mechanisms of aluminium adjuvant toxicity and autoimmunity in paediatric populations. Lupus. 21, 223-230 (2012).
    • 7. Shoenfeld, Y. & Agmon-Levin, N. 'ASIA'-Autoimmune/inflammatory syndrome inducedby adjuvants. J. Autoimmun. 36, 4-8 (2011).
    • 8. Lindblad, E. B. Aluminium compounds for use in vaccines. Immunol. Cell Biol. 82, 497-505 (2004).
    • 9. Lee, H. S. Detection of papillomavirus (HPV) L1 gene DNA possibly bound to particulate aluminium adjuvant in the HPV vaccine Gardasil®. J. Inorg. Biochem. 117, 85-92 (2012).
    • 10. Ghimire, T. R. eTh mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm. SpringerPlus. 4:181 (2015).
    • 11. Li, X., Aldayel, A. M. & Cui, Z. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminium hydroxide microparticles. J. Control Release. 173, 148-157 (2014).
    • 12. Flarend, R. et al. In vivo absorption of aluminium-containing vaccine adjuvants using 26Al. Vaccine. 15, 1314-1318 (1997).
    • 13. Huang, M. & Wang, W. Factors aefcting alum-protein interactions. Int. J. Pharm. 466, 139-146 (2014).
    • 14. Chang, M. F., White, J. L., Nail, S. L. & Hem, S. L. Role of the electrostatic force in the adsorption of proteins by aluminum hydroxide adjuvant. PDA J. Pharm. Sci. Tech. 51, 25-29 (1997).
    • 15. Iyer, S., HogenEsch, H. & Hem, S. L. Effect of the degree of phosphate substitution in aluminum hydroxide adjuvant on the adsorption of phosphorylated proteins. Pharm. Dev. Technol. 8, 81-86 (2003).
    • 16. Mold, M., Eriksson, H., Siesjö, P., Darabi, A., Shardlow, E. & Exley, C. Unequivocal identicfiation of intracellular aluminium adjuvant in a monocytic THP-1 cell line. Sci. Rep. 4, 6287 (2014).
    • 17. Exley, C. & Mold, M. eTh binding, transport and fate of aluminium in biological cells. J. Trace. Elem. Med. Bio. 30, 90-95 (2015).
    • 18. Ohlsson, L., Exley, C., Darabi, A., Sandén, E., Siesjö, P. & Eriksson, H. Aluminium based adjuvants and their eefcts on mitochondria and lysosomes of phagocytosing cells. J. Inorg. Biochem. 128, 229-236 (2013).
    • 19. Mizushima, N. Methods for monitoring autophagy. Int. J. Biochem. Cell. B. 36, 2491-2502 (2004).
    • 20. Hornung, V. et al. Silica crystals and aluminium salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847-856 (2008).
    • 21. Ghimire, T. R., Benson, R. A., Garside, P. & Brewer, J. M. Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro. Immunol. Lett. 147, 55-62 (2012).
    • 22. Eisenbarth, S. C., Colegio, O. R., O'Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 453, 1122-1126 (2008).
    • 23. HogenEsch, H. Mechanisms of immunopotentiation and safety of aluminum adjuvants. Front. Immun. 3, 406 (2012).
    • 24. Eidi, H. et al. Fluorescent nanodiamonds as a relevant tag for the assessment of alum adjuvant particle biodisposition. BMC Med. 13, 144 (2015).
    • 25. Mile, I. et al. Al adjuvants can be tracked in viable cells by lumogallion staining. J. Immunol. Methods. 422, 87-94 (2015).
    • 26. Cain, D. W., Sanders, S. E., Cunningham, M. M. & Kelsoe, G. Disparate adjuvant properties among three formulations of “alum”. Vaccine. 31, 653-660 (2013).
    • 27. Hem, S. L., Johnston, C. T. & HogenEsch, H. Imject® Alum is not aluminum hydroxide adjuvant or aluminum phosphate adjuvant. Vaccine. 25, 4985-4986 (2007).
    • 28. Franchi, L. & Nunez, G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1 beta secretion but is dispensable for adjuvant activity. Eur. J. Immunol. 38, 2085-2089 (2008).
    • 29. Fogh-Andersen, N., Altura, B. M., Altura, B. T. & Siggaard-Andersen, O. Composition of Interstitial Fluid. Clin. Chem. 41, 1522-1525 (1995).
    • 30. Seeber, S., White, J. & Hem, S. Solubilization of aluminium-containing adjuvants by constituents of interstitial uflid. J. Parenter. Sci. Technol. 45, 156-159 (1991).
    • 31. Heimlich, J. M., Regnier, F. E., White, J. L. & Hem, S. L. The in vitro displacement of adsorbed model antigens from aluminiumcontaining adjuvants by interstitial proteins. Vaccine. 17, 2873-2881 (1999).
    • 32. Paul, D. et al. Phagocytosis dynamics depends on target shape. Biophys. J. 105, 1143-1150 (2013).
    • 33. McKee, A. S. et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 183, 4403-14 (2009).
    • 34. Lu, F. & HogenEsch, H. Kinetics of the inaflmmatory response following intramuscular injection of aluminum adjuvant. Vaccine . 31, 3979-86 (2013).
    • 35. Akinc, A. & Battaglia, G. Exploiting endocytosis for nanomedicines. Cold Spring Harb. Perspect. Biol. 5, a016980 (2013).
    • 36. Pal, I. & Ramsey, J. D. The role of the lymphatic system in vaccine traficking and immune response. Adv. Drug Deliver. Rev. 63, 909-922 (2011).
    • 37. Klein, J. P., Mold, M., Mery, L., Cottier, M. & Exley, C. Aluminum content of human semen: implications for semen quality. Reprod. Toxicol. 50, 43-48 (2014).
    • 38. Marichal, T. et al. DNA released from dying cells mediates aluminium adjuvant activity. Nat Med. 17, 996-1002 (2011).
    • 39. Dart, A. E., Donnelly S. K., Holden, D. W., Way, M. & Caron, E. NcK and Cdc42 co-operate to recruit N-WASP to promote Fcγ R-mediated phagocytosis. J. Cell Sci. 125, 2825-2830 (2012).
    • 40. Flach, T. L. et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med. 17, 479-488 (2011).
    • 41. Gheradi, K. & Authier, F. Macrophagic myofasciitis: characterization and pathophysiology. Lupus. 21, 184-189 (2012).
    • 42. House, E., Esiri, M., Forster, G., Ince, P. G. & Exley, C. Aluminium, iron and copper in human brain tissues donated to the medical research council's cognitive function and ageing study. Metallomics. 4, 56-65 (2012).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article