LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Robertson, C.C.; Perutz, R.N.; Brammer, L.; Hunter, C.A. (2014)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects:
The effect of solvent on the stabilities of complexes involving a single H-bond or halogen-bond (X-bond) has been quantified. Association constants for binary complexes of 4-(phenylazo)phenol, molecular iodine, tetramethylurea and tetramethylthiourea have been measured in fifteen different solvents by UV/vis absorption and 1H NMR titration experiments. The stabilities of the H-bonded complexes decrease by more than three orders of magnitude with increasing solvent polarity. In contrast, the X-bonded complex of molecular iodine with tetramethylthiourea is remarkably insensitive to the nature of the solvent (association constants measured in alkanes and alcohols are similar). The results suggest that, in contrast to H-bonds, where electrostatics determine thermodynamic stability, charge-transfer interactions make a major contribution to the stability of these X-bonded complexes rendering them resistant to increases in solvent polarity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • halogen-bond.html. 2 P. Metrangolo, H. Neukirch, T. Pilati and G. Resnati, Acc.
    • Chem. Res., 2005, 38, 386. 3 A. C. Legon, Phys. Chem. Chem. Phys., 2010, 12, 7736. 4 F. Guthrie, J. Chem. Soc., 1863, 16, 239. 5 L. Brammer, G. M´ınguez Espallargas and S. Libri,
    • CrystEngComm, 2008, 10, 1712. 6 K. Rissanen, CrystEngComm, 2008, 10, 1107. 7 (a) G. M´ınguez Espallargas, L. Brammer and P. Sherwood,
    • Angew. Chem., Int. Ed., 2006, 45, 435; (b) G. M´ınguez
    • J., 2009, 15, 7554. 8 (a) C. B. Aakero¨y, M. Fasulo, N. Schultheiss, J. Desper and
    • C. Moore, J. Am. Chem. Soc., 2007, 129, 13772; (b)
    • G. Resnati, Chem.-Eur. J., 2013, 19, 16240-16247. 9 (a) J.-Y. Questel, C. Laurence and J. Graton, CrystEngComm,
    • 2013, 15, 3212; (b) C. Perkins, S. Libri, H. Adams and
    • L. Brammer, CrystEngComm, 2012, 14, 3033. 10 A. W. Sun, J. W. Lauher and N. S. Goroff, Science, 2006, 312,
    • 1030. 11 (a) P. Auffinger, F. A. Hays, E. Westhof and P. S. Ho, Proc. Nat.
    • Acad. Sci., 2004, 101, 16789; (b) E. Parisini, P. Metrangolo,
    • T. Pilati, G. Resnati and G. Terraneo, Chem. Soc. Rev., 2011,
    • 40, 2267. 12 (a) Y. Lu, T. Shi, Y. Wang, H. Yang, X. Yan, X. Luo, H. Jiang
    • and W. Zhu, J. Med. Chem., 2009, 52, 2854; (b) R. Wilcken,
    • A. C. Joerger and F. M. Boeckler, J. Am. Chem. Soc., 2012,
    • 134, 6810. 13 (a) S. M. Walter, F. Kniep, E. Herdtweck and S. M. Huber,
    • Angew. Chem., Int. Ed., 2011, 50, 7187; (b) F. Kniep,
    • Chem., Int. Ed., 2013, 52, 7028. 14 (a) N. L. Kilah, M. D. Wise, C. J. Serpell, A. L. Thompson,
    • Soc., 2010, 132, 11893; (b) C. L. Gilday, T. Lang,
    • Chem., Int. Ed., 2013, 52, 4356. 15 A. V. Jentzsch, A. Henning, J. Mareda and S. Matile, Acc.
    • Chem. Res., 2013, 46, 2791. 16 S. M. Walter, F. Kneip, L. Rout, F. P. Schmidtchen,
    • E. Herdtweck and S. M. Huber, J. Am. Chem. Soc., 2012,
    • 134, 8507. 17 (a) M. Fourmigu´e and P. Batail, Chem. Rev., 2004, 104, 5379;
    • A. Nakao, T. Nakamura and R. Kato, ACS Nano, 2008, 2, 143. 18 T. Shirman, T. Arad and M. E. van der Boom, Angew. Chem.,
    • Int. Ed., 2010, 49, 926. 19 L. Meazza, J. A. Foster, K. Fucke, P. Metrangolo, G. Resnati
    • and J. W. Steed, Nat. Chem., 2012, 5, 42. 20 D. W. Bruce, P. Metrangolo, F. Meyer, T. Pilati, C. Pr¨asang,
    • A. C. Whitwood, Chem.-Eur. J., 2010, 16, 9511. 21 (a) T. Clark, M. Hennemann, J. Murray and P. Politzer, J. Mol.
    • Model., 2007, 13, 291; (b) F. Zordan, L. Brammer and
    • P. Sherwood, J. Am. Chem. Soc., 2005, 127, 5979. 22 (a) C. Laurence, J. Graton, M. Berthelot and M. El Ghomari,
    • Chem.-Eur. J., 2011, 17, 10431; (b) W. J. McKinney and
    • A. I. Popov, J. Am. Chem. Soc., 1969, 91, 5215. 23 (a) R. Cabot and C. A. Hunter, Chem. Commun., 2009, 15,
    • 2005; (b) T. M. Beale, M. G. Chudzinski, M. G. Sarwar and
    • M. S. Taylor, Chem. Soc. Rev., 2013, 42, 1667. 24 (a) T. Beweries, L. Brammer, N. A. Jasim, J. E. McGrady,
    • R. N. Perutz and A. C. Whitwood, J. Am. Chem. Soc., 2011,
    • 133, 14338; (b) D. A. Smith, L. Brammer, C. A. Hunter and
    • R. N. Perutz, J. Am. Chem. Soc., 2014, 136, 1288. 25 C. Laurence and J. F. Gal, Lewis Basicity and Affinity Scales,
    • John Wiley & Sons, 2010, pp. 111-227. 26 C. A. Hunter, Angew. Chem., Int. Ed., 2004, 43, 5310. 27 C. S. Calero, J. Farwer, E. J. Gardiner, C. A. Hunter,
    • Chem. Chem. Phys., 2013, 15, 18262. 28 J. L. Cook, C. A. Hunter, C. M. R. Low, A. Perez-Velasco and
    • J. G. Vinter, Angew. Chem., Int. Ed., 2007, 46, 3706. 29 M. C. Aragoni, M. Arca, F. A. Devillanova, A. Garau, F. Isaia,
    • V. Lippolis and G. Verani, Coord. Chem. Rev., 1999, 184, 271. 30 (a) R. P. Lang, J. Am. Chem. Soc., 1962, 84, 1185; (b)
    • 1963, 85, 3096; (c) K. R. Bhaskar, R. K. Gosavi and
    • C. N. R. Rao, Trans. Faraday Soc., 1966, 62, 29; (d)
    • A. Rogstad and E. Augdahl, Acta Chem. Scand., 1971, 25,
    • 225; (e) A.-G. El-Kourashy, Spectrochim.Acta, Part A, 1981, 6,
    • 339; (f) A. Suszka, J. Chem. Soc., Perkin Trans. 2, 1985, 531;
    • Trans., 1996, 3583; (h) P. Deplano, J. R. Ferraro,
    • M. L. Mercuri and E. F. Trogu, Coord. Chem. Rev., 1999,
    • 188, 71. 31 R. A. Binstead, A. D. Zuberbu¨hler and B. Jung, SpecFit/32
    • (V3.0.34), Spectrum Soware Associates, 2003. 32 F. Bigoli, P. Deplano, A. Ienco, C. Mealli, M. L. Mercuri,
    • Inorg. Chem., 1999, 38, 4626. 33 (a) See ESI† for list of crystal structures. RSI ¼ d(S/I)/(rS + rI),
    • where rS and rI are the van der Waals radii33b of sulfur and
    • iodine, following the denition of Lommerse et al.33c; (b)
    • A. Bondi, J. Phys. Chem., 1964, 68, 441; (c)
    • Am. Chem. Soc., 1996, 118, 3108. 34 C. Ouvrard, J.-Y. Le Questel, M. Berthelot and C. Laurence,
    • Acta Crystallogr., Sect. B: Struct. Sci., 2003, B59, 512. 35 M. G. Chudzinski and M. S. Taylor, J. Org. Chem., 2012, 77,
    • 3483. 36 M. G. Sarwar, B. Dragisic, L. J. Salsberg, C. Gouliaras and
    • M. S. Taylor, J. Am. Chem. Soc., 2010, 132, 1646. 37 L. J. McAllister, D. W. Bruce and P. B. Karadakov, J. Phys.
    • Chem. A, 2012, 116, 10621.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • RCUK | Quantitative scale for hal...
  • RCUK | Quantitative scale for hal...

Cite this article