LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gray, Suzanne L.; Dunning, C. M.; Methven, John; Masato, Giacomo; Chagnon, Jeffrey M. (2014)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
Diabatic processes can alter Rossby wave structure; consequently errors arising from model processes propagate downstream. However, the chaotic spread of forecasts from initial condition uncertainty renders it difficult to trace back from root mean square forecast errors to model errors. Here diagnostics unaffected by phase errors are used, enabling investigation of systematic errors in Rossby waves in winter-season forecasts from three operational centers. Tropopause sharpness adjacent to ridges decreases with forecast lead time. It depends strongly on model resolution, even though models are examined on a common grid. Rossby wave amplitude reduces with lead time up to about five days, consistent with under-representation of diabatic modification and transport of air from the lower troposphere into upper-tropospheric ridges, and with too weak humidity gradients across the tropopause. However, amplitude also decreases when resolution is decreased. Further work is necessary to isolate the contribution from errors in the representation of diabatic processes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Brennan, M. J., G. M. Lackmann, and K. M. Mahoney (2008), Potential vorticity (PV) thinking in operations: The utility of nonconservation, Weather Forecast., 23, 168-182, doi:10.1175/2007WAF20060441.
    • Browning, K. A., and N. M. Roberts (1994), Structure of a frontal cyclone, Q. J. R. Meteorol. Soc., 120, 1535-1557.
    • Butchart, N., and E. E. Remsberg (1986), The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface, J. Atmos. Sci., 43, 1319-1339, doi:10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2.
    • Chagnon, J., S. L. Gray, and J. Methven (2013), Diabatic processes modifying potential vorticity in a North Atlantic cyclone, Q. J. R. Meteorol. Soc., 139, 1270-1282, doi:10.1002/qj.2037.
    • Davies, H., and M. Didone (2013), Diagnosis and dynamics of forecast error growth, Mon. Weather Rev., 141, 2483-2501, doi:10.1175/MWR-D-12-00242.1.
    • Dawson, A., T. N. Palmer, and S. Corti (2012), Simulating regime structures in weather and climate prediction models, Geophys. Res. Lett., 39, L21805, doi:10.1029/2012GL053284.
    • Dirren, S., M. Didone, and H. C. Davies (2003), Diagnosis of “forecast-analysis” differences of a weather prediction system, Geophys. Res. Lett., 30(20), 2060, doi:10.1029/2003GL017986.
    • Esler, J. G. (2004), Benjamin-Feir instability of Rossby waves on a jet, Q. J. R. Meteorol. Soc., 130, 1611-1630, doi:10.1256/qj.03.74.
    • Forster, C., and V. Wirth (2000), Radiative decay of idealized stratospheric filaments in the troposphere, J. Geophys. Res., 105, 10,169-10,184, doi:10.1029/2000JD900052.
    • Frame, T. H. A., M. H. P. Ambaum, S. L. Gray, and J. Methven (2011), Ensemble prediction of transitions of the North Atlantic eddy-driven jet, Q. J. R. Meteorol. Soc., 137, 1288-1297, doi:10.1002/qj.829.
    • Jung, T., A. M. Tompkins, and M. J. Rodwell (2005), Some aspects of systematic error in the ECMWF model, Atmos. Sci. Lett., 6, 133-139, doi:10.1002/asl.105.
    • Leroy, S. S., and M. J. Rodwell (2013), Leveraging highly accurate data in diagnosing errors in atmospheric models, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-12-00143.1, in press.
    • Martínez-Alvarado, O., H. Joos, J. Chagnon, M. Boettcher, S. L. Gray, R. S. Plant, J. Methven, and H. Wernli (2014), The dichotomous structure of the warm conveyor belt, Q. J. R. Meteorol. Soc., doi:10.1002/qj.2276, in press.
    • Methven, J. (2009), Diagnostics of the extratropics, Proceedings of the ECMWF Annual Seminar 2009, pp. 25-51, ECMWF, Reading, U. K.
    • Methven, J. (2013), Wave activity for large-amplitude disturbances described by the primitive equations on the sphere, J. Atmos. Sci., 70, 1616-1630, doi:10.1175/JAS-D-12-0228.1.
    • Nakamura, N., and A. Solomon (2011), Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part II: Analysis in the isentropic coordinate, J. Atmos. Sci., 66, 2783-2799, doi:10.1175/2011JAS3685.1.
    • Park, Y. Y., R. Buizza, and M. Leutbecher (2008), Preliminary results on comparing and combining ensembles, Q. J. R. Meteorol. Soc., 134, 2029-2050, doi:10.1002/qj.334.
    • Plant, R. S., G. C. Craig, and S. L. Gray (2003), On a three-fold theory of extratropical cyclogenesis, Q. J. R. Meteorol. Soc., 129, 2989-3012.
    • Rodwell, M. J., L. Magnusson, P. Bauer, P. Betchtold, M. Bonavita, C. Cardinali, and M. Diamantakis (2013), Characteristics of occasional poor medium-range weather forecasts for Europe., Bull. Am. Meteorol. Soc., 94, 1393-1405, doi:10.1175/BAMS-D-12-00099.1.
    • Stoelinga, M. T. (1996), A potential vorticity based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone, Mon. Weather Rev., 124, 849-874.
    • Vallis, G. K. (2006), Atmospheric and Oceanic Fluid Dynamics, 745 pp., Cambridge Univ. Press, Cambridge, U. K.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    43
    43%
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article