Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Evans, C.A.; Indjin, D.; Ikonic, Z.; Harrison, P. (2008)
Publisher: International Society for Optical Engineering
Languages: English
Types: Other
We present a theoretical thermal analysis of mid-infrared quantum-cascade lasers (QCLs) using a two-dimensional anisotropic heat diffusion model. Several InP-based devices are simulated over a range of operating conditions in order to extract temperature-dependent thermal resistances. These thermal resistances are used to compare the effectiveness of various heat management techniques. Finally, heat flow analysis is performed in order to understand the internal thermal dynamics of these devices. \ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, p. 553, 1994.
    • 2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, p. 301, 2002.
    • 3. A. Evans, J. S. Yu, J. David, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuouswave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett. 84(3), p. 314, 2004.
    • 4. A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Continuous-wave operation of λ ∼ 4.8μm quantum-cascade lasers at room temperature,” Appl. Phys. Lett. 85(12), p. 2166, 2004.
    • 5. J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, “High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8μm,” Appl. Phys. Lett. 87(041104), p. 1, 2005.
    • 6. A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, “Quantum-cascade lasers operating in continuous-wave mode above 90 degc at λ ∼ 5.25μm,” Appl. Phys. Lett. 88(051105), pp. 1-3, 2006.
    • 7. G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B 57, pp. 14958-14973, 1998.
    • 8. W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, pp. 8105-8113, 1999.
    • 9. M. Beck, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Buried heterostructure quantum cacade lasers with a large optical cavity waveguide,” Photon. Technol. Lett. 12, pp. 1450-1452, 2000.
    • 10. J. S. Yu, S. Slivken, A. Evans, J. David, and M. Razeghi, “Very high average power at room temperature from λ ≈ 5.9 − μm quantum-cascade lasers,” Appl. Phys. Lett. 82, p. 3397, 2003.
    • 11. C. A. Evans, V. D. Jovanovi´c, D. Indjin, Z. Ikoni´c, and P. Harrison, “Investigation of thermal effects in quantum-cascade lasers,” IEEE J. Quantum. Electron 42, pp. 859-867, 2006.
    • 12. A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(043109), pp. 1-5, 2006.
    • 13. V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc. Opto. 150(4), p. 298, 2003.
    • 14. V. Spagnolo, M. Troccoli, G. Scamarcio, C. Gmachl, F. Capasso, A. Tredicucci, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Temperature profile of GaInAs/AlInAs/InP quantum cascadelaser facets measured by microprobe photoluminescence,” Appl. Phys. Lett. 78(15), p. 2095, 2001.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article