LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Simon, Anna J.; Walls-Smith, Luke T.; Fredd, Matthew J.; Fong, Yi Fong; Gubala, Vladimir; Plaxco, Kevin W. (2016)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QD431, QD473
Recent years have seen increasing study of stimulus-responsive hydrogels constructed from aptamer-connected DNA building blocks. Presumably due to a lack of simple, quantitative tools with which to measure gel responsiveness, however, the literature describing these materials is largely qualitative. In response we demonstrate here simple, time-resolved, multiscale methods for measuring the response kinetics of these materials. Specifically, by employing trace amounts of fluorophore-quencher labeled crosslinkers and the rheology of entrapped fluorescent particles we simultaneously measure dissolution at molecular, hundred-nanometer, and hundred-micron length-scales. For our test-bed system, an adenine-responsive hydrogel, we find biphasic response kinetics dependent on both effector concentration and depth within the gel and a dissolution pattern uniform at scales longer than a few times the monomer-monomer distance. Likewise, we find that, in agreement with theoretical predictions, dissolution kinetics over the hundred nanometer length scale exhibit a power-law-like dependence on the fraction of disrupted crosslinks before a distinct crossover from solid-like to liquid-like behavior
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NIH | Spectral Laser Scanning Bio...
  • NIH | Two-Photon Microscopy for B...

Cite this article