LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, W; Wang, F; Wang, Y; Wang, J; Yu, Y; Guo, S; Chen, R; Zhou, D (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: technology, industry, and agriculture
A thiolated pH-responsive DNA conjugated gold nanorod (GNR) was developed as a multifunctional nanocarrier for targeted, pH-and near infrared (NIR) radiation dual-stimuli triggered drug delivery. It was further passivated by a thiolated poly(ethylene glycol)-biotin to improve its cancer targeting ability by specific binding to cancer cell over-expressed biotin receptors. Doxorubicin (DOX), a widely used clinical anticancer drug, was conveniently loaded into nanocarrier by intercalating inside the double-stranded pH-responsive DNAs on the GNR surface to complete the construction of the multifunctional nanomedicine. The nanomedicine can rapidly and effectively release its DOX payload triggered by an acidic pH environment (pH ~ 5) and/or applying an 808 nm NIR laser radiation. Compared to free DOX, the biotin-modified nanomedicine displayed greatly increased cell uptake and significantly reduced drug efflux by model multidrug resistant (MDR) breast cancer cell lines (MCF-7/ADR). The application of NIR radiation further increased the DOX release and facilitated its nuclear accumulation. As a result, this new DNA-GNR based multifunctional nanomedicine exerted greatly increased potency (~ 67 fold) against the MDR cancer cells over free DOX.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | NP-DNA-NDDS

Cite this article