Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Doherty, Aiden; Jackson, D; Hammerla, N; Plötz, T; Olivier, P; Granat, MH; White, T; van Hees, VT; Trenell, MI; Owen, CG; Preece, SJ; Gillions, R; Sheard, S; Peakman, T; Brage, S; Wareham, NJ (2017)
Publisher: Public Library of Science
Journal: PLoS One
Types: Article
Subjects: Electronics, Research Article, Information Technology, Anatomy, Mathematics, Classical Mechanics, Engineering and Technology, Mathematical and Statistical Techniques, Wrist, Population Groupings, Acceleration, Physical Sciences, Analysis of Variance, Bioenergetics, People and Places, Public and Occupational Health, Physics, Statistics (Mathematics), Biology and Life Sciences, Computer and Information Sciences, Data Processing, Research and Analysis Methods, Musculoskeletal System, Medicine, Age Groups, Physical Activity, Q, R, Science, Biochemistry, Accelerometers, Arms, Medicine and Health Sciences, Limbs (Anatomy), Statistical Methods
BACKGROUND: Physical activity has not been objectively measured in prospective cohorts with sufficiently large numbers to reliably detect associations with multiple health outcomes. Technological advances now make this possible. We describe the methods used to collect and analyse accelerometer measured physical activity in over 100,000 participants of the UK Biobank study, and report variation by age, sex, day, time of day, and season. METHODS: Participants were approached by email to wear a wrist-worn accelerometer for seven days that was posted to them. Physical activity information was extracted from 100Hz raw triaxial acceleration data after calibration, removal of gravity and sensor noise, and identification of wear / non-wear episodes. We report age- and sex-specific wear-time compliance and accelerometer measured physical activity, overall and by hour-of-day, week-weekend day and season. RESULTS: 103,712 datasets were received (44.8% response), with a median wear-time of 6.9 days (IQR:6.5-7.0). 96,600 participants (93.3%) provided valid data for physical activity analyses. Vector magnitude, a proxy for overall physical activity, was 7.5% (2.35mg) lower per decade of age (Cohen's d = 0.9). Women had a higher vector magnitude than men, apart from those aged 45-54yrs. There were major differences in vector magnitude by time of day (d = 0.66). Vector magnitude differences between week and weekend days (d = 0.12 for men, d = 0.09 for women) and between seasons (d = 0.27 for men, d = 0.15 for women) were small. CONCLUSIONS: It is feasible to collect and analyse objective physical activity data in large studies. The summary measure of overall physical activity is lower in older participants and age-related differences in activity are most prominent in the afternoon and evening. This work lays the foundation for studies of physical activity and its health consequences. Our summary variables are part of the UK Biobank dataset and can be used by researchers as exposures, confounding factors or outcome variables in future analyses. The UK Biobank Activity Project and the collection of activity data from participants was funded by the Wellcome Trust (https://wellcome.ac.uk/) and the Medical Research Council (http://www.mrc.ac.uk/). The analysis was supported by the British Heart Foundation Centre of Research Excellence at Oxford (http://www.cardioscience.ox.ac.uk/bhf-centre-of-research-excellence) [grant number RE/13/1/30181 to AD], the Li Ka Shing Foundation (http://www.lksf.org/) [to AD], the UK Medical Research Council (http://www.mrc.ac.uk/) [grant numbers MC_UU_12015/1 and MC_UU_12015/3 to NW and SB], the RCUK Digital Economy Research Hub on Social Inclusion through the Digital Economy (SiDE) (http://www.rcuk.ac.uk/) [EP/G066019/1 to NH], the EPSRC Centre for Doctoral Training in Digital Civics (https://www.epsrc.ac.uk/)[EP/L016176/1 to DJ], and the National Institute for Health Research (http://www.nihr.ac.uk/) [SRF-2011-04-017 to MIT]. The MRC and Wellcome Trust played a key role in the decision to establish UK Biobank, and the accelerometer data collection. No funding bodies had any role in the analysis, decision to publish, or preparation of the manuscript.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Lee I­M, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non­communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380: 219-29. doi: 10.1016/S0140­6736(12)61031­9. pmid:22818936 View Article PubMed/NCBI Google Scholar
    • 2. Chief Medical Officers of England, Scotland, Wales, and Northern Ireland. Start Active, Stay Active: A report on physical activity for health from the four home countries. U.K. Department of Health; 2011.
    • 3. Steene­Johannessen J, Anderssen SA, van Der Ploeg HP, Hendriksen IJM, Donnelly AE, Brage S, et al. Are Self­report Measures Able to Define Individuals as Physically Active or Inactive? Med Sci Sport Exerc. 2016;48. Available: http://journals.lww.com/acsmmsse/Fulltext/2016/02000/Are_Self_report_Measures_Able_to_Define.8.aspx View Article PubMed/NCBI Google Scholar
    • 4. Strath SJ, Kaminsky LA, Ainsworth BE, Ekelund U, Freedson PS, Gary RA, et al. Guide to the assessment of physical activity: Clinical and research applications: a scientific statement from the American Heart Association. Circulation. 2013;128: 2259-79. doi: 10.1161/01.cir.0000435708.67487.da. pmid:24126387 View Article PubMed/NCBI Google Scholar
    • 5. Wijndaele K, Westgate K, Stephens SK, Blair SN, Bull FC, Chastin SF, et al. Utilization and Harmonization of Adult Accelerometry Data: Review and Expert Consensus. Med Sci Sports Exerc. 2015 View Article PubMed/NCBI Google Scholar
    • 6. Craig R, Mindell J, Hirani V. Health Survey for England-2008: Physical activity and fitness. National Centre for Social Research; 2008.
    • 7. Sartini C, Wannamethee SG, Iliffe S, Morris RW, Ash S, Lennon L, et al. Diurnal patterns of objectively measured physical activity and sedentary behaviour in older men. BMC Public Health. 2015;15: 609. doi: 10.1186/s12889­015­1976­y. pmid:26141209 View Article PubMed/NCBI Google Scholar
    • 8. Berkemeyer K, Wijndaele K, White T, Cooper AJM, Luben R, Westgate K, et al. The descriptive epidemiology of accelerometer­measured physical activity in older adults. Int J Behav Nutr Phys Act. BioMed Central; 2016;13: 2. doi: 10.1186/s12966­015­0316­z. pmid:26739758 View Article PubMed/NCBI Google Scholar
    • 9. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sport Exerc. 2008;40: 181-188. View Article PubMed/NCBI Google Scholar
    • 10. Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Heal reports. 2011;22: 7-14. Available: http://europepmc.org/abstract/med/21510585 View Article PubMed/NCBI Google Scholar
    • 11. Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Br J Sports Med. 2014;48: 1019-23. doi: 10.1136/bjsports­2014­093546. pmid:24782483 View Article PubMed/NCBI Google Scholar
    • 12. Sabia S, van Hees VT, Shipley MJ, Trenell MI, Hagger­Johnson G, Elbaz A, et al. Association Between Questionnaire­ and Accelerometer­Assessed Physical Activity: The Role of Sociodemographic Factors. Am J Epidemiol. 2014;179: 781-790. doi: 10.1093/aje/kwt330. pmid:24500862 View Article PubMed/NCBI Google Scholar
    • 13. da Silva IC, van Hees VT, Ramires V V, Knuth AG, Bielemann RM, Ekelund U, et al. Physical activity levels in three Brazilian birth cohorts as assessed with raw triaxial wrist accelerometry. Int J Epidemiol. 2014;43: 1959-68. doi: 10.1093/ije/dyu203. pmid:25361583 View Article PubMed/NCBI Google Scholar van Hees VT, Renström F, Wright A, Gradmark A, Catt M, Chen KY, et al. Estimation of daily energy expenditure in pregnant and non­pregnant women
    • 14. using a wrist­worn tri­axial accelerometer. PLoS One. 2011;6: e22922. doi: 10.1371/journal.pone.0022922. pmid:21829556 View Article PubMed/NCBI Google Scholar
    • 15. White T, Westgate K, Wareham NJ, Brage S. Estimation of physical activity energy expenditure during free­living from wrist accelerometry in UK adults. PLoS One. 2016;(in press). View Article PubMed/NCBI Google Scholar
    • 16. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. Public Library of Science; 2015;12: e1001779. doi: 10.1371/journal.pmed.1001779. pmid:25826379 View Article PubMed/NCBI Google Scholar
    • 17. Ladha C, Ladha K, Jackson D, Olivier P. Shaker Table Validation Of Openmovement Ax3 Accelerometer. 3rd International Conference on Ambulatory Monitoring of Physical Activity and Movement. Amherst, MA, USA; 2013. pp. 69-70. Available: http://www.umass.edu/sphhs/sites/default/files/ICAMPAM Poster Session Abstracts 4­24.pdf
    • 18. van Hees VT, Fang Z, Langford J, Assah F, Mohammad A, da Silva ICM, et al. Autocalibration of accelerometer data for free­living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol. 2014;117: 738-44. doi: 10.1152/japplphysiol.00421.2014. pmid:25103964 View Article PubMed/NCBI Google Scholar
    • 19. Hammerla NY, Kirkham R, Andras P, Ploetz T. On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution. Proceedings of the 17th annual international symposium on International symposium on wearable computers-ISWC '13. New York, New York, USA: ACM Press; 2013. p. 65.
    • 20. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2016. Available: https://www.r­project.org/
    • 21. Wolff­Hughes DL, Fitzhugh EC, Bassett DR, Churilla JR. Waist­Worn Actigraphy: Population­Referenced Percentiles for Total Activity Counts in U.S. Adults. J Phys Act Health. 2015;12: 447-53. doi: 10.1123/jpah.2013­0464. pmid:24905055 View Article PubMed/NCBI Google Scholar
    • 22. Esliger DW, Rowlands A V, Hurst TL, Catt M, Murray P, Eston RG. Validation of the GENEA Accelerometer. Med Sci Sport Exerc. 2011;43: 1085-1093. View Article PubMed/NCBI Google Scholar
  • No similar publications.
  • BioEntity Site Name

Share - Bookmark

Funded by projects

Cite this article