LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tsibouklis, John (2016)
Publisher: RSC Publishing
Types: Article
Subjects: chemistry, Pharmacy, biological, cancer
To limit the incidence of relapse, cancer treatments must not promote the emergence of drug resistance in tumour and cancer stem cells. Under the proviso that a therapeutic amount of boron is selectively delivered to cancer cells, Boron Neutron Capture Therapy (BNCT) may represent one approach that meets this requirement. To this end, we report on the synthesis and pharmacology of several chemical entities, based on boron-rich carborane moieties that are functionalised with Delocalized Lipophilic Cations (DLCs), which target selectively the mitochondria of tumour cells. The treatment of tumour and cancer stem cells (CSCs) with such DLC-functionalized carboranes (DLC-carboranes) induces cell growth arrest that is both highly cancer-cell selective and permanent. Experiments involving cultures of normal and cancer cells show that only normal cells exhibit recapitulation of their proliferation potential upon removal of the DLC-carborane treatment. At the molecular level, the pharmacological effect of DLC-carboranes is exerted through activation of the p53/p21 axis.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Q. T. Ostrom, H. Gittleman, P. M. de Blank, J. L. Finlay, J. G. Gurney, R. McKean-Cowdin, D. S. Stearns, J. E. Wolff, M. Liu, Y. Wolinsky, C. Kruchko and J. S. Barnholtz-Sloan, Neuro-Oncology, 2016, 18(suppl 1), i1-i50.
    • 2 J. Ferlay, E. Steliarova-Foucher, J. Lortet-Tieulent, S. Rosso, J. W. W. Coebergh, H. Comber, D. Forman and F. Bray, Eur. J. Cancer, 2013, 49(6), 1374-1403.
    • 3 O. Visser, E. Ardanaz, L. Botta, M. Sant, A. Tavilla and P. Minicozzi, Eur. J. Cancer, 2015, 51, 2231-2241.
    • 4 J. S. Modica-Napolitano and K. K. Singh, Mitochondrion, 2004, 4(5-6), 755-762.
    • 5 Treating a malignant brain tumour (2015), Available: http:// www.nhs.uk/Conditions/brain-tumour-malignant/Pages/ Treatment.aspx, [Last accessed 28 September 2015].
    • 6 P. A. Sotiropoulou, M. S. Christodoulou, A. Silvani, C. Herold-Mende and D. Passarella, Drug Discovery Today, 2014, 19, 1547-1562.
    • 7 C. Alifieris and D. T. Trafalis, Pharmacol. Ther., 2015, 152, 63-82.
    • 8 J. D. Lathia, S. C. Mack, E. E. Mulkearns-Hubert, C. L. Valentim and J. N. Rich, Genes Dev., 2015, 29, 1203-1217.
    • 9 T. Sun, Y. Li, Y. Huang, Z. Zhang, W. Yang, Z. Du and Y. Zhou, Oncotarget, 2016, 7(28), 43095-43108.
    • 10 E. D. Tseligka, A. Rova, E. P. Amanatiadou, G. Calabrese, J. Tsibouklis, D. G. Fatouros and I. S. Vizirianakis, Pharm. Res., 2016, 33(8), 1945-1958.
    • 11 E. Carafoli and I. Roman, Mol. Aspects Med., 1980, 3(5), 295-429.
    • 12 L. O. Chang, C. A. Schnaitman and H. P. Morris, Cancer Res., 1971, 31(2), 108-113.
    • 13 L. B. Chen, Annu. Rev. Cell Biol., 1988, 4, 155-181.
    • 14 M. Breunig, S. Bauer and A. Goepferich, Eur. J. Pharm. Biopharm., 2008, 68(1), 112-128.
    • 15 M. P. Murphy, Biochim. Biophys. Acta, 2008, 1777(7-8), 1028-1031.
    • 16 J. S. Modica-Napolitano and J. R. Aprille, Cancer Res., 1987, 47(16), 4361-4365.
    • 17 D. H. Margineantu and D. M. Hockenbery, Curr. Opin. Genet. Dev., 2016, 38, 110-117.
    • 18 B. Yan, L. Dong and J. Neuzil, Mitochondrion, 2016, 26, 86-93.
    • 19 D. Schiffer, P. Cavalla and G. J. Pilkington, Brain Tumor Invasion: Biological, Clinical And Therapeutic Considerations, ed. T. Mikkelsen, Liss, 1998, pp. 161-184.
    • 20 M. A. Davis and J. B. Little, Radiat. Res., 1970, 43, 534-553.
    • 21 G. Calabrese, J. J. Nesnas, E. Barbu, D. Fatouros and J. Tsibouklis, Drug Discovery Today, 2012, 17(3-4), 153-159.
    • 22 T. Yamamoto, K. Nakai, T. Kageji, H. Kumada, K. Endo, M. Matsuda, Y. Shibata and A. Matsumura, Radiother. Oncol., 2009, 91(1), 80-84.
    • 23 M. G. Castro, R. Cowen, I. K. Williamson, A. David, M. J. Jimenez-Dalmaroni, X. Yuan, A. Bigliari, J. C. Williams, J. Hu and P. R. Lowenstein, Pharmacol. Ther., 2003, 98(1), 71-108.
    • 24 R. F. Barth, Appl. Radiat. Isot., 2003, 67(7-8), S3-S6.
    • 25 A. R. Pitochelli and M. F. Hawthorne, J. Am. Chem. Soc., 1960, 82(12), 3228.
    • 26 H. Hatanaka and Y. Nakagawa, Int. J. Radiat. Oncol., Biol., Phys., 1994, 28(5), 1061-1066.
    • 27 A. S. Don and P. J. Hogg, Trends Mol. Med., 2004, 10(8), 372-378.
    • 28 E. A. Liberman, V. P. Topaly, L. M. Tsofina, A. A. Jasaitis and V. P. Skulachev, Nature, 1969, 222, 1076-1078.
    • 29 S. K. Powers and K. Ellington, J. Neurooncol., 1988, 6(4), 343-347.
    • 30 J. Jose and K. Burgess, Tetrahedron, 2006, 62(48), 11021-11037.
    • 31 N. Dias and C. Bailly, Biochem. Pharmacol., 2005, 70(1), 1-12.
    • 32 J. D. Steichen, M. J. Weiss, D. R. Elmaleh and R. L. Martuza, J. Neurosurg., 1991, 74(1), 116-122.
    • 33 V. Weissig and V. Torchilin, Adv. Drug Delivery Rev., 2001, 49, 127-149.
    • 34 R. J. Burns and M. P. Murphy, Arch. Biochem. Biophys., 1997, 339, 33-39.
    • 35 V. Weissig, S. M. Cheng and G. G. M. D'Souza, Mitochondrion, 2004, 3, 229-244.
    • 36 R. W. Horobin, S. Trapp and V. Weissig, J. Controlled Release, 2007, 121(3), 125-136.
    • 37 J. C. Smith, Biochim. Biophys. Acta, 1990, 1016, 1-28.
    • 38 J. T. Madak and N. Neamati, Curr. Top. Med. Chem., 2015, 15, 745-766.
    • 39 J. S. Modica-Napolitano, M. J. Weiss, L. B. Chen and J. R. Aprille, Biochem. Biophys. Res. Commun., 1984, 118, 717-723.
    • 40 W. M. Anderson, H. S. Patheja, D. L. Delinck, W. W. Baldwin, S. T. Smiley and L. B. Chen, Biochem. Int., 1989, 19, 673-685.
    • 41 M. L. Crossley, P. F. Dreisbach, C. M. Hofmann and R. P. Parker, J. Am. Chem. Soc., 1952, 74(3), 573-578.
    • 42 C. W. Lin, J. R. Shulok, S. D. Kirley, L. Cincotta and J. W. Foley, Cancer Res., 1991, 51(10), 2710-2719.
    • 43 V. R. Fantin, M. J. Berardi, L. Scorrano, S. J. Korsmeyer and P. Leder, Cancer Cell, 2002, 2(1), 29-42.
    • 44 L. Scorrano, V. Petronilli, R. Colonna, F. Di Lisa and P. Bernadi, J. Biol. Chem., 1999, 274, 24657-24663.
    • 45 D. M. Adams, W. Ji, R. F. Barth and W. Tjarks, Anticancer Res., 2000, 20, 3395-3402.
    • 46 D. Yova, V. Atlamazoglou, N. Kavantzas and S. Loukas, Lasers Med Sci, 2000, 15, 140-147.
    • 47 G. Calabrese, A. C. N. M. Gomes, E. Barbu, T. G. Nevell and J. Tsibouklis, J. Mater. Chem., 2008, 18(40), 4864-4871.
    • 48 J. A. Ioppolo, M. Kassiou and L. M. Rendina, Tetrahedron Lett., 2009, 50(47), 6457-6461.
    • 49 D. Theodoropoulos, A. Rova, J. R. Smith, E. Barbu, G. Calabrese, I. S. Vizirianakis, J. Tsibouklis and D. G. Fatouros, Bioorg. Med. Chem. Lett., 2013, 23, 6161-6166.
    • 50 F. Ismail and D. A. Winkler, ChemMedChem, 2014, 9, 885-898.
    • 51 R. W├╝rth, F. Barbieri and T. Florio, Biomed. Res. Int., 2014, 126586.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article