LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hassen, FH; Mhamdi, L (2016)
Publisher: IEEE
Languages: English
Types: Other
Subjects:

Classified by OpenAIRE into

ACM Ref: ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS
This paper proposes a novel and highly scalable multistage packet-switch design based on Networks-on-Chip (NoC). In particular, we describe a three-stage packet-switch fabric with a Round-Robin packets dispatching scheme where each central stage module is an Output-Queued Unidirectional NoC (OQ-UDN), instead of the conventional single-hop crossbar. We test the switch performance under different traffic profiles. In addition to experimental results, we present an analytical approximation for the theoretical throughput of the switch under Bernoulli i.i.d arrivals. We also provide an upper-bound estimation of the end-to-end blocking probability in the proposed switch to help predict performance and to optimize the design.

Share - Bookmark

Funded by projects

  • EC | SCALE

Cite this article