LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Elliott, JR; Atwell, ES; Whyte, WS (2000)
Publisher: Association for Computational Linguistics
Languages: English
Types: Other
Subjects:
This paper describes algorithms and software developed to characterise and detect generic intelligent language-like features in an input signal, using natural language learning techniques: looking for characteristic statistical "language-signatures" in test corpora. As a first step towards such species-independent language-detection, we present a suite of programs to analyse digital representations of a range of data, and use the results to extrapolate whether or not there are language-like structures which distinguish this data from other sources, such as music, images, and white noise. Outside our own immediate NLP sphere, generic communication techniques are of particular interest in the astronautical community, where two sessions are dedicated to SETI at their annual International conference with topics ranging from detecting ET technology to the ethics and logistics of message construction (Elliott and Atwell, 1999; Ollongren, 2000; Vakoch, 2000).

Share - Bookmark

Cite this article