LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Corsini, Niccolo R. C.; Greco, Andrea; Hine, Nicholas; Molteni, Carla; Haynes, Peter D. (2013)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: QD
Identifiers:doi:10.1063/1.4819132
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to benatural and efficient for the ab initio calculation of finite systems underhydrostatic pressure. Based on a definition of the system volume as that enclosed within anelectronic density isosurface [M. Cococcioni, F. Mauri,G. Ceder, and N. Marzari, Phys. Rev. Lett.94, 145501 (2005)], it supports bothgeometry optimizations and molecular dynamics simulations. We introduce an approach for calibratingthe parameters defining the volume in the context of geometry optimizations and discuss theirsignificance. Results in good agreement with simulations using explicit solvents are obtained, validating ourapproach. Size-dependent pressure-induced structural transformations andvariations in the energy gap of hydrogenated silicon nanocrystals areinvestigated, including one comparable in size to recent experiments. A detailed analysis of thepolyamorphic transformationsreveals three types of amorphous structures and theirpersistence on depressurization is assessed.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 65J. D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376 (1957).
    • 66P. Sharma and S. Ganti, J. Appl. Mech. 71, 663 (2004).
    • 67S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B 41, 12021 (1990).
    • 68H. Katzke and P. Tolédano, J. Phys.: Condens. Matter 19, 275204 (2007).
    • 69H. Olijnyk, S. Sikka, and W. B. Holzapfel, Phys. Lett. A 103, 137 (1984).
    • 70S. K. Deb, M. Wilding, M. Somayazulu, and P. F. McMillan, Nature (London) 414, 528 (2001).
    • 71N. Garg, K. K. Pandey, K. V. Shanavas, C. A. Betty, and S. M. Sharma, Phys. Rev. B 83, 115202 (2011).
    • 72K. K. Pandey, N. Garg, K. V. Shanavas, S. M. Sharma, and S. K. Sikka, J. App. Phys. 109, 113511 (2011).
    • 73D. Daisenberger, M. Wilson, P. F. McMillan, R. Q. Cabrera, M. C. Wilding, and D. Machon, Phys. Rev. B 75, 224118 (2007).
    • 74D. Daisenberger, T. Deschamps, B. Champagnon, M. Mezouar, R. Quesada Cabrera, M. Wilson, and P. F. McMillan, J. Phys. Chem. B 115, 14246 (2011).
    • 75T. Morishita, Phys. Rev. Lett. 93, 055503 (2004).
    • 76T. Morishita, J. Chem. Phys. 130, 194709 (2009).
    • 77M. Durandurdu, Phys. Rev. B 73, 035209 (2006).
    • 78M. Durandurdu and D. A. Drabold, Phys. Rev. B 64, 014101 (2001).
    • 79R. Martonˇák, D. Donadio, and M. Parrinello, Phys. Rev. Lett. 92, 225702 (2004).
    • 80L. Guttman, J. Non-Cryst. Solids 116, 145 (1990).
    • 81S. Le Roux and P. Jund, Comput. Mater. Sci. 49, 70 (2010).
    • 82B. Engels, P. Richard, K. Schroeder, S. Blügel, P. Ebert, and K. Urban, Phys. Rev. B 58, 7799 (1998).
    • 83B. Welber, C. K. Kim, M. Cardona, and S. Rodriguez, Solid State Commun. 17, 1021 (1975).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article