LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Corsini, Niccolo R. C.; Greco, Andrea; Hine, Nicholas D. M.; Molteni, Carla; Haynes, Peter D. (2013)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: INDUCED AMORPHIZATION, POROUS SILICON, ROCK-SALT TRANSITION, Condensed Matter - Mesoscale and Nanoscale Physics, SI35H36 CLUSTER, INDUCED STRUCTURAL TRANSFORMATIONS, FINITE SYSTEMS, QD, PHASE-TRANSITIONS, Condensed Matter - Materials Science, MOLECULAR-DYNAMICS METHOD, SEMICONDUCTOR NANOCRYSTALS, SILICON NANOCRYSTALS

We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 65J. D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376 (1957).
    • 66P. Sharma and S. Ganti, J. Appl. Mech. 71, 663 (2004).
    • 67S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B 41, 12021 (1990).
    • 68H. Katzke and P. Tolédano, J. Phys.: Condens. Matter 19, 275204 (2007).
    • 69H. Olijnyk, S. Sikka, and W. B. Holzapfel, Phys. Lett. A 103, 137 (1984).
    • 70S. K. Deb, M. Wilding, M. Somayazulu, and P. F. McMillan, Nature (London) 414, 528 (2001).
    • 71N. Garg, K. K. Pandey, K. V. Shanavas, C. A. Betty, and S. M. Sharma, Phys. Rev. B 83, 115202 (2011).
    • 72K. K. Pandey, N. Garg, K. V. Shanavas, S. M. Sharma, and S. K. Sikka, J. App. Phys. 109, 113511 (2011).
    • 73D. Daisenberger, M. Wilson, P. F. McMillan, R. Q. Cabrera, M. C. Wilding, and D. Machon, Phys. Rev. B 75, 224118 (2007).
    • 74D. Daisenberger, T. Deschamps, B. Champagnon, M. Mezouar, R. Quesada Cabrera, M. Wilson, and P. F. McMillan, J. Phys. Chem. B 115, 14246 (2011).
    • 75T. Morishita, Phys. Rev. Lett. 93, 055503 (2004).
    • 76T. Morishita, J. Chem. Phys. 130, 194709 (2009).
    • 77M. Durandurdu, Phys. Rev. B 73, 035209 (2006).
    • 78M. Durandurdu and D. A. Drabold, Phys. Rev. B 64, 014101 (2001).
    • 79R. Martonˇák, D. Donadio, and M. Parrinello, Phys. Rev. Lett. 92, 225702 (2004).
    • 80L. Guttman, J. Non-Cryst. Solids 116, 145 (1990).
    • 81S. Le Roux and P. Jund, Comput. Mater. Sci. 49, 70 (2010).
    • 82B. Engels, P. Richard, K. Schroeder, S. Blügel, P. Ebert, and K. Urban, Phys. Rev. B 58, 7799 (1998).
    • 83B. Welber, C. K. Kim, M. Cardona, and S. Rodriguez, Solid State Commun. 17, 1021 (1975).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article