Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Scott, JPR; Sale, C; Greeves, JP; Casey, A; Dutton, J; Fraser, WD (2012)
Publisher: Elsevier
Languages: English
Types: Article
Individuals often perform exercise in the fasted state, but the effects on bone metabolism are not currently known. We compared the effect of an overnight fast with feeding a mixed meal on the bone metabolic response to treadmill running. Ten, physically-active males aged 28 ± 4 y (mean ± 1SD) completed two, counterbalanced, 8 d trials. After 3 d on a standardised diet, participants performed 60 min of treadmill running at 65% V02max on Day 4 following an overnight fast (FAST) or a standardised breakfast (FED). Blood samples were collected at baseline, before and during exercise, for 3h after exercise, and on four consecutive follow-up days (FU1-FU4). Plasma/serum were analysed for the c-terminal telopeptide region of collagen type 1 (P-CTX), n-terminal propeptides of procollagen type 1 (P1NP), osteocalcin (OC), bone alkaline phosphatase (bone ALP), parathyroid hormone (PTH), albumin-adjusted calcium, phosphate, osteoprotegerin (OPG), Cortisol, leptin and ghrelin.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] K . Van Proyen, K . Szlufcik, H . Nielens, M . Ramaekers, P. Hespel. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J. Appl. Physiol. 110 (2011) 236-245.
    • [2] E.F. Coyle, A.R. Coggan, M . K . Hemmert, J.L. Ivy. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J. Appl. Physiol. 61 (1986) 165-172.
    • [3] M . J . Arkinstall, C.R. Bruce, V . Nikolopoulos, A.P Garnham, J.A. Hawley. Effect of carbohydrate ingestion on metabolism during running and cycling. J. Appl. Physiol. 91 (2001)2125-2134.
    • [4] G.R. Cox, S.A. Clark, A . J Cox, S.L. Halson, M . Hargreaves, J.A. Hawley, N . Jeacocke, R.J. Snow, W . K . Yeo, L . M . Burke. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J. Appl. Physiol. 109 (2010)126-134.
    • [5] J.W. Helge, P.W. Watt, E.A. Richter, M . J . Rennie, B. Kiens. Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans. J. Physiol. 537 (2001) 1009-1020.
    • [6] L . M . Odland, G.J Heigenhauser, L . L Spriet. Effects of high fat provision on muscle P D H activation and malonyl-CoA content in moderate exercise. J. Appl. Physiol. 89 (2000) 2352- 2358.
    • [7] L . M . Odland, G.J. Heigenhauser, D. Wong, M . G . Hollidge-Horvat, L . L Spriet. Effects of increased fat availability on fat-carbohydrate interaction during prolonged exercise in men. Am. J. Physiol. 274 (1998) R894-902.
    • [8] J.F. Horowitz, R. Mora-Rodriguez, L.O. Byerley, E.F. Coyle. Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Am. J. Physiol. 273 (1997)E768-775.
    • [9] R.J. Maughan, J. Fallah, E.F. Coyle. The effects of fasting on metabolism and performance. Brit. J. Sp. Med. 44 (2010) 490-494.
    • [10] N . H . Bjarnason, E.E. Henriksen, P. Alexandersen, S. Christgau, D.B. Henriksen, C. Christiansen. Mechanism of circadian variation in bone resorption. Bone. 30 (2002) 307-313.
    • [11] D.B. Henriksen, P. Alexandersen, N . H . Bjarnason, T. Vilsb0ll, B. Hartmann, E.E. Henriksen, I. Byrjalsen, T. Krarup, J.J. Hoist, C. Christiansen. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J. Bone. Miner. Res. 18 (2003) 2180- 2189.
    • [12] J.J Hoist, B. Hartmann, LB. Gottschalck, P.B. Jeppesen, J. Miholic, D.B. Henriksen. Bone resorption is decreased postprandially by intestinal factors and glucagon-like peptide-2 is a possible candidate. Scand. J. Gastroenterol. 42 (2007) 814-820.
    • [13] J.A. Clowes, H.C. Allen, D . M . Prentis, R. Eastell, A. Blumsohn. Octreotide abolishes the acute decrease in bone turnover in response to oral glucose. J. Clin. Endocrinol. Metab. 88(2003)4867-4873.
    • [14] J.A. Clowes, T.S. Yap, J. L i , N . Hoyle, A. Blumsohn, R.A.Hannon, R. Eastell. The effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 30 (2002) 886-890.
    • [15] J. Guillemant, C. Accarie, G. Peres, S. Guillemant. Acute effects of an oral calcium load on markers of bone metabolism during endurance cycling exercise in male athletes. Calcif. Tissue. Int. 74 (2004) 407-414.
    • [16] M . Herrmann, M . Muller, J. Scharhag, M . Sand-Hill, W. Kindermann, W. Herrmann. The effect of endurance exercise-induced lactacidosis on biochemical markers of bone turnover. Clin. Chem. Lab. Med. 45 (2007) 1381-1389.
    • [17] K . Kerschan-Schindl, M . Thalmann, G.H Sodeck, K. Skenderi, A . L . Matalas, S. Grampp, C. Ebner, P. Pietschmann. A 246-km continuous running race causes significant changes in bone metabolism. Bone. 45 (2009) 1079-1083.
    • [18] L. Maimoun, J. Manetta, I. Couret, A . M . Dupuy, D. Mariano-Goulart, J.P. Micallef, E. Peruchon, M . Rossi. The intensity level of physical exercise and the bone metabolism response. Int. J. Sports. Med. 27 (2006) 105-111.
    • [19] J.P.R. Scott, C. Sale, J.P Greeves, A. Casey, J. Dutton, W.D. Fraser. The effects of training status on the metabolic response of bone to an acute bout of exhaustive treadmill running. J. Clin. Endocrinol. Metab. 95 (2010) 3918-3925.
    • [20] M . B . Schaffler, E.L. Radin, D.B. Burr. Long-term fatigue behaviour of compact bone at low strain magnitude and rate. Bone. 11 (1990) 321-326.
    • [21] P. Garnero, E. Sornay-Rendu, M . C . Chapuy, P.D. Delmas. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J. Bone. Miner. Res. 11 (1996) 337-349.
    • [22] K. Bennell, S. Malcolm, S. Thomas, J. Wark, P. Brukner. The incidence and distribution of stress fractures in competitive track and field athletes: A twelve-month prospective study. Am. J. Sports. Med. 24 (1996) 211-217.
    • [23] A.D. Stewart, J. Hannan. Total and regional bone density in male runners, cyclists, and controls. Med. Sci. Sports. Exerc. 32 (2000) 1373-1377.
    • [24] K. Hind, J.G. Truscott, J.A. Evans. Low lumbar spine bone mineral density in both male and female endurance runners. Bone. 39 (2006) 880-885.
    • [25] J. Lappe, D. Cullen, G. Haynatzki, R. Recker, R. Ahlf, K. Thompson. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J. Bone Miner. Res. 23 (2008) 741-749.
    • [26] D.W. Barry, W . M . Kohrt. B M D decreases over the course of a year in competitive male cyclists. J. Bone. Miner. Res. 23 (2008) 484-491.
    • [27] R.S. Rogers, A . W . Dawson, Z. Wang, J.P Thyfault, P S Hinton. Acute response of plasma markers of bone turnover to a single-bout of resistance-training or plyometrics. J. Appl. Physiol. I l l (2011) 1353-1360.
    • [28] J.P.R. Scott, C. Sale, J.P Greeves, A. Casey, J. Dutton, W.D. Fraser. Comment on Rogers et al. Acute response of plasma markers of bone turnover to a single-bout of resistance-training or plyometrics. J. Appl. Physiol. 112 (2012) 328-329.
    • [29] J.P. Rissanen, M.I. Suominen, Z. Peng, J . M . Halleen. Secreted tartrateresistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue. Int. 82 (2008) 108-115.
    • [30] G. Banfi, G. Lombardi, A. Colombini, G. Lippi G. Bone metabolism markers in sports medicine. Sports. Med. 40 (2010) 697-714.
    • [31] J.P.R. Scott, C. Sale, J.P. Greeves, A. Casey, J. Dutton, W.D. Fraser. The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise. J. Appl. Physiol. 110 (2011) 423-432.
    • [32] J. Erdmann, F. Lippl, S. Wagenpfeil, V. Schusdziarra. Differential association of basal and postprandial plasma ghrelin with leptin, insulin, and type 2 diabetes. Diabetes. 54 (2005) 1371-1378.
    • [33] J. Dallongeville, B. Hecquet, P. Lebel, J-L. Edme, C. Le Fur, J-C. Fruchart, J. Auwerx, M . Romon. Short term response of circulating leptin to feeding and fasting in man: influence of circadian cycle. Int. J. Obesity. 22 (1998) 728-733.
    • [34] J.L. Olive, G.D. Miller. Differential effects of maximal- and moderate-intensity runs on plasma leptin in healthy trained subjects. Nutrition. 17 (2001) 365-9.
    • [35] E.T. Vestergaard, R. Dall, K . H . Lange, M . Kjaer, J.S. Christiansen, J.O. Jorgensen. The ghrelin response to exercise before and after growth hormone administration. J. Clin. Endocrinol. Metab 92 (2007) :297-303.
    • [36] N . Fukushima, R. Hanada, H . Teranishi, Y . Fukue, T. Tachibana, H . Ishikawa, S. Takeda, Y . Takeuchi, S. Fukumoto, K . Kangawa, K. Nagata, M . Kojima. J. Bone. Miner. Res. 20 (2005) 790-8.
    • [37] T. Thomas. The complex effects of leptin on bone metabolism through multiple pathways. Curr. Opin. Pharmacol. 4 (2004) 295-300.
    • [39] R.J. Maughan. Fasting and sport: an introduction. Brit. J. Sp. Med. 44 (2010) 473-474.
    • [41] J. Guillemant, H.T. Le, C. Accarie, S.T. du Montcel, A . M . Delabroise, M . J . Arnaud, S. Guillemant. Mineral water as a source of dietary calcium: acute effects on parathyroid function and bone resorption in young men. Am. J. Clin. Nutr. 71 (2000) 999-1002.
    • [42] V. Zikan, T. Haas, J.J. Stepan. Acute effects in healthy women of oral calcium on the calcium-parathyroid axis and bone resorption as assessed by serum beta-CrossLaps. Calcif. Tissue. Int. 68 (2001) 352-357.
    • [43] D.W. Barry, R.E. Van Pelt, K.C. Hansen, M . Witten, P. Wolfe, W. M . Kohrt. Acute calcium ingestion attenuates exercise-induced disruption of calcium homeostasis. Med. Sci. Sports. Exerc. 43 (2011) 617-623.
    • [44] J.S. Walsh, D.B. Henriksen. Feeding and bone. Arch. Biochem. Biophys. 503 (2010) 11-19.
    • [45] A . M . O'Connor, S. Pola, B. M . Ward, D. Fillmore, K . D . Buchanan, J.P. Kirwan. The gastroenteroinsular response to glucose ingestion during postexercise recovery. Am. J. Physiol. 290 (2006) E l 155-1161.
    • [46] S.Y. Ueda, T. Yoshikawa, Y . Katsura, T. Usui, S. Fujimoto. Comparable effects of moderate intensity exercise on changes in anorectic gut hormone levels and energy intake to high intensity exercise. J. Endocrinol. 203 (2009a) 357-364.
    • [47] S.Y. Ueda, T. Yoshikawa, Y . Katsura, T. Usui, H . Nakao, S. Fujimoto. Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males. J. Endocrinol. 201 (2009b) 151-159.
    • [52] R . M . Crameri, H . Langberg, B. Teisner, P. Magnusson, H.D. Schrader, J.L. Olesen, C.H. Jensen, S. Koskinena, C. Suetta, M . Kjaer. Enhanced procollagen processing in skeletal muscle after a single bout of eccentric loading in humans. Matrix. Biol. 23 (2004) 259-264.
    • [53] B.F. Miller, M . Hansen, J.L. Olesen, P. Schwarz, J.A. Babraj, K. Smith, M.J. Rennie, M . Kjaer. Tendon collagen synthesis at rest and after exercise in women. J. Appl. Physiol. 102 (2007)541-546.
    • [54] J. Melkko, T. Hellevik, L. Risteli, J. Risteli, B. Smedsrod. Clearance of NH2-terminal propeptides of types I and III procollagen is a physiologic function of the scavenger receptor in liver endothelial cells. J. Exp. Med. 179 (1994) 405-412.
    • [55] A.G. Robling, F . M . Hinant, D.B. Burr, C.H. Turner. Shorter, more frequent mechanical loading sessions enhance bone mass. Med. Sci. Sports. Exerc. 34 (2002) 196-202.
    • [56] L.O. Chailurkit, S. Chanprasertyothin, R. Rajatanavin, B. Ongphiphadhanakul. Reduced attenuation of bone resorption after oral glucose in type 2 diabetes. Clin. Endocrinol. (Oxf). 68 (2008)858-862.
    • [57] G.M. J0rgensen, B. Vind, M . Nybo, L . M . Rasmussen, K. H0Jlund. Acute hyperinsulinemia decreases plasma osteoprotegerin with diminished effect in type 2 diabetes and obesity. Eur. J. Endocrinol. 161 (2009) 95-101.
    • [58] S. Ziegler, A. Niessner, B. Richter, S. Wirth, E. Billensteiner, W. Woloszczuk, J. Slany, G. Geyer. Endurance running acutely raises plasma osteoprotegerin and lowers plasma receptor activator of nuclear factor kappa B ligand. Metabolism. 54 (2005) 935-938.
    • [59] D. Hegedus, V. Ferencz, P.L. Lakatos, S. Meszaros, P. Lakatos, C. Horvath, F. Szalay. Decreased bone density, elevated serum osteoprotegerin, and beta-cross-laps in Wilson disease. J. Bone. Miner. Res. 17 (2002) 1961-1967.
    • [60] V. Zikan, J.J. Stepan. Marker of bone resorption in acute response to exogenous or endogenous parathyroid hormone. Biomark. Insights. 25 (2008) 19-24.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article