Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Clark, R.A.; Punzo, G.; MacLeod, C.N.; Dobie, G.; Summan, R.; Bolton, G.; Pierce, S.G.; Macdonald, M. (2017)
Publisher: Elsevier
Languages: English
Types: Article
© 2016 Elsevier B.V.A novel approach to the autonomous generation of trajectories for multiple aerial vehicles is presented, whereby an artificial kinematic field provides autonomous control in a distributed and highly scalable manner. The kinematic field is generated relative to a central target and is modified when a vehicle is in close proximity of another to avoid collisions. This control scheme is then applied to the mock visual inspection of a nuclear intermediate level waste storage drum. The inspection is completed using two commercially available quadcopters, in a laboratory environment, with the acquired visual inspection data processed and photogrammetrically meshed to generate a three-dimensional surface-meshed model of the drum. This paper contributes to the field of multi-agent coverage path planning for structural inspection and provides experimental validation of the control and inspection results.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [2] S. Esposito, P. Fallavollita, W. Wahbeh, C. Nardinocchi, M. Balsi, Performance evaluation of UAV photogrammetric 3D reconstruction., in: IGARSS, 4788-4791, 2014.
    • [3] F. Bonnin-Pascual, E. Garcia-Fidalgo, A. Ortiz, Semi-autonomous visual inspection of vessels assisted by an unmanned micro aerial vehicle, in: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, IEEE, 3955-3961, 2012.
    • [4] J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, R. Siegwart, A UAV system for inspection of industrial facilities, in: Aerospace Conference, 2013 IEEE, IEEE, 1-8, 2013.
    • [5] M. Burri, J. Nikolic, C. Hurzeler, G. Caprari, R. Siegwart, Aerial service robots for visual inspection of thermal power plant boiler systems, in: Applied Robotics for the Power Industry (CARPI), 2012 2nd International Conference on, IEEE, 70-75, 2012.
    • [6] A. Ortiz, F. Bonnin-Pascual, E. Garcia-Fidalgo, Vessel Inspection: A Micro-Aerial Vehicle-based Approach, Journal of Intelligent & Robotic Systems 76 (1) (2014) 151-167.
    • [7] R. Khanna, M. Moller, J. Pfeifer, F. Liebisch, A. Walter, R. Siegwart, Beyond point clouds-3D mapping and field parameter measurements using UAVs, in: Emerging Technologies & Factory Automation (ETFA), 2015 IEEE 20th Conference on, IEEE, 1-4, 2015.
    • [8] F. Remondino, L. Barazzetti, F. Nex, M. Scaioni, D. Sarazzi, UAV photogrammetry for mapping and 3d modeling-current status and future perspectives, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38 (1) (2011) C22.
    • [9] J. Liu, H. Wang, X. Liu, F. Li, G. Sun, P. Song, An automated 3D reconstruction method of UAV images, in: Applied Optics and Photonics China (AOPC2015), International Society for Optics and Photonics, 96780S-96780S, 2015.
    • [10] J. S. Bellingham, M. Tillerson, M. Alighanbari, J. P. How, Cooperative path planning for multiple UAVs in dynamic and uncertain environments, in: Decision and Control, 2002, Proceedings of the 41st IEEE Conference on, vol. 3, IEEE, 2816-2822, 2002.
    • [11] M. Shanmugavel, A. Tsourdos, B. White, R. Z˙bikowski, Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs, Control Engineering Practice 18 (9) (2010) 1084-1092.
    • [12] E. Galceran, M. Carreras, A survey on coverage path planning for robotics, Robotics and Autonomous Systems 61 (12) (2013) 1258-1276.
    • [13] L. Babel, Flight path planning for unmanned aerial vehicles with landmark-based visual navigation, Robotics and Autonomous Systems 62 (2) (2014) 142-150.
    • [14] A. Barrientos, J. Colorado, J. d. Cerro, A. Martinez, C. Rossi, D. Sanz, J. Valente, Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots, Journal of Field Robotics 28 (5) (2011) 667-689.
    • [15] G. Murtaza, S. Kanhere, S. Jha, Priority-based coverage path planning for aerial wireless sensor networks, in: Intelligent Sensors, Sensor Networks and Information Processing, 2013 IEEE Eighth International Conference on, IEEE, 219-224, 2013.
    • [16] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, The international journal of robotics research 5 (1) (1986) 90-98.
    • [17] D. F. Gordon, W. M. Spears, O. Sokolsky, I. Lee, Distributed spatial control, global monitoring and steering of mobile agents, in: Information Intelligence and Systems, 1999. Proceedings. 1999 International Conference on, IEEE, 681-688, 1999.
    • [18] W. M. Spears, D. F. Gordon, Using artificial physics to control agents, in: Information Intelligence and Systems, 1999. Proceedings. 1999 International Conference on, IEEE, 281-288, 1999.
    • [19] N. E. Leonard, E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups, in: Decision and Control, 2001. Proceedings of the 40th IEEE Conference on, vol. 3, IEEE, 2968-2973, 2001.
    • [20] N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni, R. E. Davis, Collective motion, sensor networks, and ocean sampling, Proceedings of the IEEE 95 (1) (2007) 48-74.
    • [21] D. A. Lawrence, E. W. Frew, W. J. Pisano, Lyapunov vector fields for autonomous unmanned aircraft flight control, Journal of Guidance, Control, and Dynamics 31 (5) (2008) 1220-1229.
    • [22] E. W. Frew, D. A. Lawrence, S. Morris, Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields, Journal of guidance, control, and dynamics 31 (2) (2008) 290-306.
    • [23] D. J. Bennet, C. McInnes, Verifiable control of a swarm of unmanned aerial vehicles, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 223 (7) (2009) 939-953.
    • [24] S. B. McCamish, M. Romano, X. Yun, Autonomous distributed control of simultaneous multiple spacecraft proximity maneuvers, Automation Science and Engineering, IEEE Transactions on 7 (3) (2010) 630-644.
    • [25] C. Vasile, A. Pavel, C. Buiu, Integrating human swarm interaction in a distributed robotic control system, in: Automation Science and Engineering (CASE), 2011 IEEE Conference on, IEEE, 743-748, 2011.
    • [26] C. Harris, M. Stephens, A combined corner and edge detector., in: Alvey vision conference, vol. 15, Citeseer, 50, 1988.
    • [27] P. Hansen, H. Alismail, P. Rander, B. Browning, Pipe mapping with monocular fisheye imagery, in: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, IEEE, 5180-5185, 2013.
    • [28] S. El Kahi, D. Asmar, A. Fakih, J. Nieto, E. Nebot, A vison-based system for mapping the inside of a pipe, in: Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, IEEE, 2605-2611, 2011.
    • [29] J. Shi, C. Tomasi, Good features to track, in: Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer Society Conference on, IEEE, 593-600, 1994.
    • [30] G. Dobie, R. Summan, C. MacLeod, S. G. Pierce, Visual odometry and image mosaicing for NDE, NDT & E International 57 (2013) 17-25.
    • [31] M. L. Brutto, P. Meli, Computer vision tools for 3D modelling in archaeology, International Journal of Heritage in the Digital Era 1 (1 suppl) (2012) 1-6.
    • [32] T. P. Kersten, M. Lindstaedt, Image-based low-cost systems for automatic 3D recording and modelling of archaeological finds and objects, in: Progress in cultural heritage preservation, Springer, 1-10, 2012.
    • [33] Vicon, Vicon motion tracking system, http://www.vicon.com/ Software/Tracker, [Online; accessed January-2015], 2015.
    • [34] Parrot, Parrot AR.Drone 2.0 Technical Specifications, http:// ardrone2.parrot.com/ardrone-2/specifications//, [Online; accessed January-2015], 2015.
    • [35] Nikon, Nikon D3200, http://www.europe-nikon.com/en\_GB/ product/digital-cameras/slr/consumer/d3200/, [Online; accessed January-2015], 2015.
    • [36] AF-S DX NIKKOR 18-55mm f/3.5-5.6G http://www.europe-nikon.com/en\_GB/product/ nikkor-lenses/auto-focus-lenses/dx/zoom/ af-s-dx-nikkor-18-55mm-f-3-5-5-6g-vr, [Online; January-2015], 2015.
    • [38] P. Misra, P. Enge, Global Positioning System: Signals, Measurements and Performance Second Edition, Lincoln, MA: Ganga-Jamuna Press, 2006.
    • [39] Autodesk, Autodesk 123D Catch, http://www.123dapp.com/catch, [Online; accessed February-2015], 2015.
    • [40] P. Azad, T. Gockel, R. Dillmann, Computer Vision: principles and practice .
    • [41] Autodesk, Calibration toolbox, http://www.123dapp.com/catch, [Online; accessed February-2015], 2015.
    • [42] Geomagic Control, http://www.geomagic.com/en/products/ qualify/overview, [Online; accessed January-2015], 2015.
    • [43] J. Kelly, G. S. Sukhatme, Visual-inertial sensor fusion: Localization, mapping and sensor-to-sensor self-calibration, The International Journal of Robotics Research 30 (1) (2011) 56-79.
    • [44] J. Engel, T. Scho¨ps, D. Cremers, LSD-SLAM: Large-scale direct monocular SLAM, in: Computer Vision-ECCV 2014, Springer, 834-849, 2014.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article