Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Perley, DA; Tanvir, NR; Hjorth, J; Laskar, T; Berger, E; Chary, R; Postigo, ADU; Fynbo, JPU; Krühler, T; Levan, AJ; Michałowski, MJ; Schulze, S
Publisher: American Astronomical Society
Languages: English
Types: Article
Subjects: QB, QC, Astrophysics - Astrophysics of Galaxies, Astrophysics - High Energy Astrophysical Phenomena

Classified by OpenAIRE into

arxiv: Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Galaxy Astrophysics, Astrophysics::High Energy Astrophysical Phenomena, Astrophysics::Solar and Stellar Astrophysics, Astrophysics::Earth and Planetary Astrophysics
We present rest-frame NIR luminosities and stellar masses for a large and uniformly-selected population of GRB host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find strong evolution in the host luminosity distribution between z~0.5 (median absolute NIR AB magnitude ~ -18.5, corresponding to M* ~ 3x10^8 M_sun and z~1.5), but negligible variation between z~1.5 and z~5 (median magnitude ~ -21.2, corresponding to M* ~ 5x10^9 M_sun). Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high-redshift while low-mass star-forming galaxies retain little dust in their ISM. Comparing our luminosity distributions to field surveys and measurements of the high-z mass-metallicity relation, our results have good consistency with a model in which the GRB rate per unit star-formation is constant in galaxies with gas-phase metallicity below approximately the Solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously-reported "excess" in the GRB rate beyond z>2; metals stifle GRB production in most galaxies at z<1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star-formation in low-mass galaxies undetectable to Spitzer to be a small minority at most redshifts (~10% at z~2, ~25% at z~3, and ~50% at z=3.5-6.0).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481 Blain, A. W., & Natarajan, P. 2000, MNRAS, 312, L35 Bloom, J. S., Kulkarni, S. R., & Djorgovski, S. G. 2002, AJ, 123, 1111 Boissier, S., Salvaterra, R., Le Floc'h, E., et al. 2013, A&A, 557, A34 Bouwens, R. J., Illingworth, G. D., Franx, M., et al. 2009, ApJ, 705, 936 Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2014, ApJ, 793, 115 Bromberg, O., Nakar, E., & Piran, T. 2011, ApJL, 739, L55 Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
    • Butler, N. R., Bloom, J. S., & Poznanski, D. 2010, ApJ, 711, 495 Cameron, E. 2011, PASA, 28, 128
    • Castellano, M., Fontana, A., Grazian, A., et al. 2012, A&A, 540, A39 Castro Cerón, J. M., Michałowski, M. J., Hjorth, J., et al. 2010, ApJ, 721, 1919 Chabrier, G. 2003, PASP, 115, 763
    • Chen, H.-W., Perley, D. A., Pollack, L. K., et al. 2009, ApJ, 691, 152 Cucchiara, A., Levan, A. J., Fox, D. B., et al. 2011, ApJ, 736, 7 Djorgovski, S. G., Frail, D. A., Kulkarni, S. R., et al. 2001, ApJ, 562, 654 Erb, D. K., Shapley, A. E., Pettini, M., et al. 2006, ApJ, 644, 813 Fazio, G. G., Hora, J. L., Allen, L. E., et al. 2004, ApJS, 154, 10 Finkelstein, S. L., Papovich, C., Salmon, B., et al. 2012, ApJ, 756, 164 Fryer, C. L., & Heger, A. 2005, ApJ, 623, 302
    • Fynbo, J. P. U., Prochaska, J. X., Sommer-Larsen, J., Dessauges-Zavadsky, M., & Møller, P. 2008, ApJ, 683, 321
    • Fynbo, J. P. U., Starling, R. L. C., Ledoux, C., et al. 2006, A&A, 451, L47 Fynbo, J. P. U., Jakobsson, P., Prochaska, J. X., et al. 2009, ApJS, 185, 526 Galametz, A., Grazian, A., Fontana, A., et al. 2013, ApJS, 206, 10 Graham, J. F., & Fruchter, A. S. 2013, ApJ, 774, 119
    • Greiner, J., Fox, D. B., Schady, P., et al. 2015, ApJ, 809, 76 Hashimoto, T., Perley, D. A., Ohta, K., et al. 2015, ApJ, 806, 250 Heger, A., Langer, N., & Woosley, S. E. 2000, ApJ, 528, 368 Hirschi, R., Meynet, G., & Maeder, A. 2005, A&A, 443, 581 Hunt, L. K., Palazzi, E., Michałowski, M. J., et al. 2014, A&A, 565, A112 Izzard, R. G., Ramirez-Ruiz, E., & Tout, C. A. 2004, MNRAS, 348, 1215 Jakobsson, P., Hjorth, J., Malesani, D., et al. 2012, ApJ, 752, 62 Kajisawa, M., Ichikawa, T., Tanaka, I., et al. 2011, PASJ, 63, 379 Kelly, P. L., Filippenko, A. V., Modjaz, M., & Kocevski, D. 2014, ApJ, 789, 23 Kewley, L. J., & Dopita, M. A. 2002, ApJS, 142, 35
    • Kewley, L. J., & Ellison, S. L. 2008, ApJ, 681, 1183
    • Kistler, M. D., Yüksel, H., Beacom, J. F., & Stanek, K. Z. 2008, ApJL, 673, L119
    • Kobulnicky, H. A., & Kewley, L. J. 2004, ApJ, 617, 240
  • No related research data.
  • No similar publications.

Share - Bookmark

Published in

Funded by projects

  • EC | EGGS

Cite this article