Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Whall, Terry E.; Plews, Andrew D.; Mattey, Nevil L.; Phillips, P. J. (Peter J.); Ekenberg, U. (1995)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: QC, TK
The effective masses in remote doped Si/Si0.8Ge0.2/Si quantum wells having sheet densities, Ns in the range 2 × 1011–1.1 × 1012 cm – 2 have been determined from the temperature dependencies of the Shubnikov–de Haas oscillations. The values obtained increase with magnetic field and Ns. This behavior is taken as evidence for the nonparabolicity of the valence band and accounts for the discrepancies in previously reported masses. Self-consistent band structure calculations for a triangular confinement of the carriers have also been carried out and provide confirmation of the increase in mass with Ns. Theory and experiment give extrapolated Gamma point effective masses of 0.21 and 0.20 of the free-electron mass, respectively.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 T. E. Whall, A. D. Plews, N. L. Mattey, and E. H. C. Parker, Appl. Phys. Lett. 65, 3362 ~1994!.
    • 2 J. P. Cheng, V. P. Kesan, D. A. Grutzmacher, and T. O. Sedgewick, Appl. Phys. Lett. 64, 1681 ~1994!.
    • 3 R. A. Kiehl, P. E. Batson, J. O. Chu, D. C. Edelstein, F. F. Fang, B. Laikhtman, D. R. Lombardi, W. T. Masselink, B. S. Meyerson, J. J. Nocera, A. H. Parsons, C. L. Stanis, and J. C. Tsang, Phys. Rev. B 48, 11946 ~1993!.
    • 4 F. F. Fang, P. J. Wang, B. S. Meyerson, J. J. Nocera, and K. E. Ismail, Surf. Sci. 263, 175 ~1992!.
    • 5 R. People, J. C. Bean, and D. V. Lang, J. Vac. Sci. Technol. A 3, 846 ~1985!.
    • 6 S. R. Chun and K. L. Wang, IEEE Trans. Electron Devices ED-39, 2153 ~1993!.
    • 7 B. Laikhtman and R. A. Kiehl, Phys. Rev. B 47, 10515 ~1993!.
    • 8 T. E. Whall, N. L. Mattey, A. D. Plews, P. J. Phillips, O. A. Mironov, R. J. Nicholas, and M. J. Kearney, Appl. Phys. Lett. 64, 357 ~1994!.
    • 9 C. J. Emeleus, T. E. Whall, D. W. Smith, R. A. Kubiak, E. H. C. Parker, and M. J. Kearney, J. Appl. Phys. 73, 3852 ~1993!.
    • 10 E. Basaran, R. A. Kubiak, T. E. Whall, and E. H. C. Parker, Appl. Phys. Lett. 64, 3470 ~1994!.
    • 11 U. Ekenberg and M. Altarelli, Phys. Rev. B 32, 3712 ~1985!.
    • 12 J. P. Eisenstein, H. L. Stormer, V. Narayanamurti, A. C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 53, 2579 ~1984!.
    • 13 U. Ekenberg, W. Batty, and E. P. O'Reilly, J. Phys. Colloq. C 5, 553 ~1987!.
    • 14 A. Ghiti and U. Ekenberg, Semicond. Sci. Technol. 9, 1575 ~1994!.
    • 15 G. C. Osborne, J. E. Schirber, T. J. Drummond, L. R. Dawson, B. L. Doyle, and I. J. Fritz, Appl. Phys. Lett. 49, 731 ~1986!.
    • 16 B. A. Foreman, Phys. Rev. B 49, 1757 ~1994!.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article