LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Güell, Aleix G.; Cuharuc, Anatolii S.; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R. (2015)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QD
The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)63+/2+ as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)63+/2+, is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)63+/2+ is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)63+/2+. These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Schwierz, F., Graphene Transistors. Nat. Nanotechnol. 2010, 5, 487-496. 2. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M.,
    • Nat. Nanotechnol. 2014, 9, 780-793. 3. Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson Rae, I.; Bachtold, A.,
    • Nat. Nanotechnol. 2011, 6, 339-342. 4. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.;
    • 2007, 6, 652-655. 5. Jia, X., Graphene Edges: a Review of their Fabrication and Characterization.
    • Nanoscale 2011, 3, 86-95. 6. Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S., Edge State in Graphene
    • Ribbons: Nanometer Size Effect and Edge Shape Dependence. Phys. Rev. B 1996, 54, 17954-
    • 17961. 7. Kobayashi, Y., Observation of Zigzag and Armchair edges of Graphite Using
    • Scanning Tunneling Microscopy and Spectroscopy. Phys. Rev. B 2005, 71, 193406. 8. Girit, Ç. Ö.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park,
    • and Dynamics. Science 2009, 323, 1705-1708. 10. Ritter, K. A.; Lyding, J. W., The Influence of Edge Structure on the Electronic
    • Properties of Graphene Quantum Dots and Nanoribbons. Nat. Mater. 2009, 8, 235-242. 11. Niimi, Y., Scanning Tunneling Microscopy and Spectroscopy of the Electronic Local
    • Density of States of Graphite Surfaces Near Monoatomic Step Edges. Phys. Rev. B 2006, 73,
    • 085421. 12. Tao, C., Spatially Resolving Edge States of Chiral Graphene Nanoribbons. Nat. Phys.
    • 2011, 7, 616-620. 13. Schäffel, F., Atomic Resolution Imaging of the Edges of Catalytically Etched
    • Suspended Few-layer Graphene. ACS Nano 2011, 5, 1975-1983. 14. Girit, Ç. Ö., Graphene at the Edge: Stability and Dynamics. Science 2009, 323, 1705-
    • 1708. 15. Jia, X. T., Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic
    • Nanoribbons. Science 2009, 323, 1701-1705. 16. Suenaga, K.; Koshino, M., Atom-by-atom Spectroscopy at Graphene Edge. Nature
    • 2010, 468, 1088-1090. 17. Liu, Z.; Suenaga, K.; Harris, P. J. F.; Iijima, S., Open and Closed Edges of Graphene
    • Layers. Phys. Rev. Lett. 2009, 102, 015501. 18. Cançado, L. G.; Pimenta, M. A.; Neves, B. R. A.; Dantas, M. S. S.; Jorio, A.,
    • 2004, 93, 247401. 22. Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M., Electrochemistry of Graphene
    • and Related Materials. Chem. Rev. 2014, 114, 7150-7188. 23. Li, Y.; Zhou, W.; Wang, H.; Xie, L.; Liang, Y.; Wei, F.; Idrobo, J.-C.; Pennycook, S.
    • Complexes. Nat. Nanotechnol. 2012, 7, 394-400. 24. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-Based
    • Ultracapacitors. Nano Lett. 2008, 8, 3498-3502. 25. Pak, A. J.; Paek, E.; Hwang, G. S., Impact of Graphene Edges on Enhancing the
    • Performance of Electrochemical Double Layer Capacitors. J. Phys. Chem. C 2014, 118,
    • 21770-21777. 26. Zach, M. P.; Ng, K. H.; Penner, R. M., Molybdenum Nanowires by Electrodeposition.
    • Science 2000, 290, 2120-2123. 27. Delamar, M.; Hitmi, R.; Pinson, J.; Saveant, J. M., Covalent Modification of Carbon
    • Reduction of Diazonium Salts. J. Am. Chem. Soc. 1992, 114, 5883-5884. 28. Sharma, R.; Baik, J. H.; Perera, C. J.; Strano, M. S., Anomalously Large Reactivity of
    • Single Graphene Layers and Edges toward Electron Transfer Chemistries. Nano Lett. 2010,
    • 10, 398-405. 33. Lai, S. C. S.; Patel, A. N.; McKelvey, K.; Unwin, P. R., Definitive Evidence for Fast
    • Imaging. Angew. Chem., Int. Ed. 2012, 51, 5405-5408. 37. Lhenry, S.; Leroux, Y. R.; Hapiot, P., Use of Catechol As Selective Redox Mediator
    • in Scanning Electrochemical Microscopy Investigations. Anal. Chem. 2012, 8, 7518-7524. 38. Kneten, K. R.; McCreery, R. L., Effects of Redox System Structure on Electron-
    • Transfer Kinetics at Ordered Graphite and Glassy Carbon Electrodes. Anal. Chem. 1992, 64,
    • 2518-2524. 39. Güell, A. G.; Meadows, K. E.; Dudin, P. V.; Ebejer, N.; Macpherson, J. V.; Unwin, P.
    • Nano Lett. 2014, 14, 220-224. 40. Güell, A. G.; Meadows, K. E.; Dudin, P. V.; Ebejer, N.; Byers, J. C.; Macpherson, J.
    • Farad. Discuss. 2014, 172, 439-455. 43. Güell, A. G.; Ebejer, N.; Snowden, M. E.; Macpherson, J. V.; Unwin, P. R., Structural
    • Electrodes. J. Am. Chem. Soc. 2012, 134, 7258-7261. 44. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.;
    • Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. 45. Ebejer, N.; Schnippering, M.; Colburn, A. W.; Edwards, M. A.; Unwin, P. R.,
    • Electrochemical Cell Microscopy. Anal. Chem. 2010, 82, 9141-9145. 46. Valota, A. T.; Kinloch, I. A.; Novoselov, K. S.; Casiraghi, C.; Eckmann, A.; Hill, E.
    • Nano 2011, 5, 8809-8815. 47. Velický, M.; Bradley, D. F.; Cooper, A. J.; Hill, E. W.; Kinloch, I. A.; Mishchenko,
    • Kinetics on Mono- and Multilayer Graphene. ACS Nano 2014, 8, 10089-10100. 48. Tan, C.; Rodríguez-López, J.; Parks, J. J.; Ritzert, N. L.; Ralph, D. C.; Abruña, H. D.,
    • Scanning Electrochemical Microscopy. ACS Nano 2012, 6, 3070-3079. 51. Zhang, G.; Kirkman, P. M.; Patel, A. N.; Cuharuc, A. S.; McKelvey, K.; Unwin, P.
    • Electrochemical Activity. J. Am. Chem. Soc. 2014, 136, 11444-11451. 57. Rutter, G. M.; Jung , S.; Klimov, N. N.; Newell, D. B.; Zhitenev, N. B., Stroscio, J.
    • A., Microscopic Polarization in Bilayer Graphene. Nat. Phys. 2011, 7, 649-655. 58. Partoens, B.; Peeters, F. M., From Graphene to Graphite: Electronic Structure Around
    • the K Point. Phys. Rev. B 2006, 74, 075404. 59. Williams, C. G.; Edwards, M. A.; Colley, A. L.; Macpherson, J. V.; Unwin, P. R.,
    • Redox Activity. Anal. Chem. 2009, 81, 2486-2495. 66. Atamny, F.; Fässler, T. F.; Baiker, A.; Schlögl, R., On the Imaging Mechanism of
    • Monatomic Steps in Graphite. Appl. Phys. A 2000, 71, 441-447. 68. Li, Z.; Wang, Y.; Kozbial, A.; Shenoy, G.; Zhou, F.; McGinley, R.; Ireland, P.;
    • Wettability of Supported Graphene and Graphite. Nat. Mater. 2013, 12, 925-931.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | QUANTIF
  • RCUK | Uncovering the Electroacti...

Cite this article