LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Houghton, S.M.; Tobias, S.M.; Knobloch, E.; Proctor, M.R.E. (2009)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
Properties of the complex Ginzburg-Landau equation with drift are studied focusing on the Benjamin-Feir stable regime. On a finite interval with Neumann boundary conditions the equation exhibits bistability between a spatially uniform time-periodic state and a variety of nonuniform states with complex time dependence. The origin of this behavior is identified and contrasted with the bistable behavior present with periodic boundary conditions and no drift.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] I. S. Aranson, L. Kramer, The world of the complex GinzburgLandau equation, Rev. Mod. Phys. 74 (2002) 99-143.
    • [2] L. Brusch, M. G. Zimmermann, M. van Hecke, M. Ba¨r, A. Torcini, Modulated amplitude waves and the transition from phase to defect chaos, Phys. Rev. Lett. 85 (2000) 86-89.
    • [3] J. R. Cash, D. R. Moore, A high order method for the numerical solution of two-point boundary value problems, BIT Numerical Mathematics 20 (1980) 44-52.
    • [4] H. Chat´e, Spatiotemporal intermittency regimes of the onedimensional complex Ginzburg-Landau equation, Nonlinearity 7 (1994) 185-204.
    • [5] S. J. Cowley, F. T. Smith, On the stability of Poiseuille-Couette flow: a bifurcation from infinity, J. Fluid Mech. 156 (1985) 83- 100.
    • [6] M. C. Cross, P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65 (1993) 851-1112.
    • [7] R. J. Deissler, Noise-sustained structure, intermittency, and the Ginzburg-Landau equation, J. Stat. Phys. 40 (1985) 371-395.
    • [8] B. Eckhardt, T. M. Schneider, B. Hof, J.Westerweel, Turbulence transition in pipe flow, Ann. Rev. Fluid Mech. 39 (2007) 447- 468.
    • [9] M. Golubitsky, D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. I, New York: Springer, 1985.
    • [10] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, New York: Springer, 1984.
    • [11] R. R. Kerswell, Recent progress in understanding the transition to turbulence in a pipe, Nonlinearity 18 (2005) R17-R44.
    • [12] M. R. E. Proctor, S. M. Tobias, E. Knobloch, Noise-sustained structures due to convective instability in finite domains, Phys. D 145 (2000) 191-206.
    • [13] S. Rosenblat, S. H. Davis, Bifurcation from infinity, SIAM J. Appl. Math. 37 (1979) 1-19.
    • [14] F. Schilder, H. M. Osinga, W. Vogt, Continuation of quasiperiodic invariant tori, SIAM J. App. Dyn. Sys. 4 No. 3 (2005) 459-488.
    • [15] F. Schilder, W. Vogt, S. Schreiber, H. M. Osinga, Fourier methods for quasi-periodic oscillations, Int. J. Numer. Meth. Engng. 67 (2006) 629-671.
    • [16] K. Stewartson, J. T. Stuart, A non-linear instability theory for a wave system in plane Poiseuille flow, J. Fluid Mech. 48 (1971) 529-545.
    • [17] S. M. Tobias, E. Knobloch, Breakup of spiral waves into chemical turbulence, Phys. Rev. Lett. 80 (1998) 4811-4814.
    • [18] S. M. Tobias, M. R. E. Proctor, E. Knobloch, The role of absolute instability in the solar dynamo, Astron. Astrophys. 318 (1997) L55-L58.
    • [19] S. M. Tobias, M. R. E. Proctor, E. Knobloch, Convective and absolute instabilities of fluid flows in finite geometry, Phys. D 113 (1998) 43-72.
    • [20] M. van Hecke, Building blocks of spatiotemporal intermittency, Phys. Rev. Lett. 80 (1998) 1896-1899.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article