LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lamb, Gavin P; Kobayashi, Shiho (2016)
Publisher: American Astronomical Society and IOP Publishing
Languages: English
Types: Article
Subjects: General Relativity and Quantum Cosmology, QB, QC, Astrophysics - High Energy Astrophysical Phenomena

Classified by OpenAIRE into

arxiv: Astrophysics::High Energy Astrophysical Phenomena, Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Galaxy Astrophysics
Short gamma-ray bursts (GRBs) are believed to be produced by relativistic jets from mergers of neutron-stars (NS) or neutron-stars and black-holes (BH). If the Lorentz-factors $\Gamma$ of jets from compact-stellar-mergers follow a similar power-law distribution to those observed for other high-energy astrophysical phenomena (e.g. blazars, AGN), the population of jets would be dominated by low-$\Gamma$ outflows. These jets will not produce the prompt gamma-rays, but jet energy will be released as x-ray/optical/radio transients when they collide with the ambient medium. Using Monte Carlo simulations, we study the properties of such transients. Approximately $78\%$ of merger-jets $<300~$Mpc result in failed-GRBs if the jet $\Gamma$ follows a power-law distribution of index $-1.75$. X-ray/optical transients from failed-GRBs will have broad distributions of their characteristics: light-curves peak $t_p\sim0.1-10~$days after a merger; flux peaks for x-ray $10^{-6}{\rm~mJy}\lesssim~F_x\lesssim10^{-2}~$mJy; and optical flux peaks at $14\lesssim~m_g\lesssim22$. X-ray transients are detectable by Swift XRT, and $\sim85\%$ of optical transients will be detectable by telescopes with limiting magnitude $m_g \gtrsim 21$, for well localized sources on the sky. X-ray/optical transients are followed by radio transients with peak times narrowly clustered around $t_p\sim10~$days, and peak flux of $\sim~10-100~$mJy at 10 GHz and $\sim~0.1~$mJy at 150 MHz. By considering the all-sky rate of short GRBs within the LIGO/Virgo range, the rate of on-axis orphan afterglows from failed-GRB would be 2.6(26) per year for NS-NS(NS-BH) mergers, respectively. Since merger jets from gravitational-wave (GW) trigger events tend to be directed to us, a significant fraction of GW events could be associated with the on-axis orphan afterglow.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abadie, J., Abbott, B. P., Abbott, R., et al. 2010, CQGra, 27, 173001 Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a, LRR, 19, 1 Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016b, PhRvL, 116, 06112 Band, D. L. 2006, ApJ, 644, 378
    • Beloborodov, A. M. 2011, ApJ, 737, 68
    • Berger, E. 2014, ARA&A, 52, 43
    • Bloom, J. S., Giannios, D., Metzger, B. D., et al. 2011, Sci, 333, 203 Burrows, D. N., Kennea, J. A., Ghisellini, G., et al. 2011, Natur, 476, 421 Cenko, S. B., Krimm, H. A., & Horesh, A. 2012, ApJ, 753, 77 Cenko, S. B., Kulkarni, S. R., Horesh, A., et al. 2013, ApJ, 769, 130 Cenko, S. B., Urban, A. L., Perley, D. A., et al. 2015, ApJ, 803, 24 Connaughton, V., Burns, E., Goldstein, A., et al. 2016, ApJ, 826, 6 Daigne, F., Bosnjak, Z., & Dubus, G. 2011, A&A, 526, 13 Dermer, C. D., Chiang, J., & Mitman, K. E. 2000, ApJ, 537, 785 Fong, W., Berger, E., Margutti, R., & Zauderer, B. A. 2015, ApJ, 815, 102 Gao, H., Ding, X., Wu, X. F., Zhang, B., & Dai, Z. G. 2013, ApJ, 771, 86 Ghirlanda, G., Ghisellini, G., Salvaterra, R., et al. 2013, MNRAS, 428, 1410 Ghirlanda, G., Nava, L., Ghisellini, G., Celotti, A., & Firmani, C. 2009, A&A, 496, 585
    • Ghirlanda, G., Nava, L., Ghisellini, G., et al. 2012, MNRAS, 420, 483 Götz, D., Laurent, P., Lebrun, F., Daigne, F., & Bosnjak, Z. 2009, ApJL, 695, L208
    • Granot, J., & Piran, T. 2012, MNRAS, 421, 570
    • Granot, J., & Sari, R. 2002, ApJ, 568, 820
    • Gruber, D., Goldstein, A., Weller von Ahlefeld, V., et al. 2014, ApJS, 211, 27 Hascoët, R., Beloborodov, A., Daigne, F., & Mochkovitch, R. 2014, ApJ, 782, 5 Huang, Y. F., Dai, Z. G., & Lu, T. 2002, MNRAS, 332, 735 Jorstad, S. G., Marscher, A. P., Lister, M. L., et al. 2005, AJ, 130, 1418 Kisaka, S., Ioka, K., & Takami, H. 2015, ApJ, 802, 119 Kobayashi, S., Piran, T., & Sari, R. 1997, ApJ, 490, 92 Kobayashi, S., Piran, T., & Sari, R. 1999, ApJ, 513, 669 Kobayashi, S., Ryde, F., & MacFadyen, A. 2002, ApJ, 577, 302 Kobayashi, S., & Sari, R. 2001, ApJ, 551, 934
    • Kobayashi, S., & Zhang, B. 2003, ApJL, 582, L75
    • Kochanek, C., & Piran, T. 1993, ApJL, 417, L17
    • Levan, A. J., Tanvir, N. R., Cenko, S. B., et al. 2011, Sci, 333, 199 Liang, E., Yi, S. X., Zhang, J., et al. 2010, ApJ, 725, 2209 Liodakis, I., & Pavlidou, V. 2015, MNRAS, 451, 2434
    • Lister, M., Cohen, M. H., Homan, D. C., et al. 2009, ApJ, 138, 1874 Lister, M., & Marscher, A. P. 1997, ApJ, 476, 572
    • Lithwick, Y., & Sari, R. 2001, ApJ, 555, 540
    • Marscher, A. P. 2006a, in AIP Conf. Proc. 856, RELATIVISTIC JETS: The Common Physics of AGN, Microquasars, and Gamma-Ray Bursts, ed. P. H. Hughes & J. N. Bregman, (Melville, NY: AIP), 1
    • Marscher, A. P. 2006b, in PoS, Proc. VI Microquasar Workshop: Microquasars and Beyond, 21
    • Mészáros, P., & Rees, M. 1992, MNRAS, 258, 41
    • Mészáros, P., & Rees, M. 1997, ApJ, 476, 232
    • Metzger, B. D., & Berger, E. 2012, ApJ, 746, 48
    • Mundell, C., Kopac, D., Arnold, D. M., et al. 2013, Natur, 504, 119 Nakar, E. 2007, PhR, 442, 166
    • Nakar, E., & Piran, T. 2002a, NewA, 8, 141
    • Nakar, E., & Piran, T. 2002b, MNRAS, 330, 920
    • Nakar, E., & Piran, T. 2011, Natur, 478, 82
    • Nemmen, R. S. 2012, Sci, 338, 1445
    • Paczyński, B. 1986, ApJL, 308, L43
    • Panaitescu, A., & Kumar, P. 2002, ApJ, 571, 779
    • Pe'er, A., Meszaros, P., & Rees, M. J. 2005, ApJ, 635, 476 Piner, B. G., Pushkarev, A. B., Kovalev, Y. Y., et al. 2012, ApJ, 758, 84 Piran, T. 1999, PhR, 314, 575
    • Piran, T. 2004, RvMP, 76, 1143
    • Piran, T., Shemi, A., & Narayan, R. 1993, MNRAS, 263, 861 Rhoads, J. E. 2003, ApJ, 591, 1097
    • Saikia, P., Elmar, K., & Falcke, H. 2016, MNRAS, 461, 297 Salmonson, J. D., & Galama, T. J. 2002, ApJ, 569, 682 Sari, R., Narayan, R., & Piran, T. 1996, ApJ, 473, 204
    • Sari, R., & Piran, T. 1999, ApJ, 520, 641
    • Sari, R., Piran, T., & Halpern, J. P. 1999, ApJL, 519, L17 Sari, R., Piran, T., & Narayan, R. 1998, ApJL, 497, L17 Shemi, A., & Piran, T. 1990, ApJL, 365, L55
    • Steele, I., Mundell, C. M., Smith, R. J., Kobayashi, S., & Guidorzi, C. 2009, Natur, 462, 767
    • Tang, Q. W., Peng, F. K., Wang, X. Y., & Tam, P. H. T. 2015, ApJ, 806, 194
    • Thomson, C. 2007, ApJ, 666, 1012
    • van Eerten, H. J., & MacFadyen, A. I. 2012, ApJ, 751, 155 Wanderman, D., & Piran, T. 2015, MNRAS, 448, 3026 Woosley, S. E., & Bloom, J. S. 2006, ARA&A, 44, 1
    • Yamazaki, R., Asano, K., & Ohira, Y. 2016, PTEP, 2016, 051E01 Yonetoku, D., Murakami, T., Nakamura, T., et al. 2004, ApJ, 609, 935 Yonetoku, D., Murakami, T., Gunji, S., et al. 2011, ApJL, 743, L30 Yost, S., Harrison, F. A., Sari, R., & Frail, D. A. 2003, ApJ, 597, 459 Zauderer, B. A., Berger, E., Soderberg, A. M., et al. 2011, Natur, 476, 425 Zhang, B., & Mészáros, P. 2004, Int. Mod. Phys, 19, 2385 Zhang, F., & Li, Y. 2012, ApJ, 750, 11
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article