LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Silvers, L. J.; Bushby, P. J.; Proctor, M. R. E. (2009)
Publisher: Blackwell Publishing
Languages: English
Types: Article
Subjects: Astrophysics - Solar and Stellar Astrophysics, QB

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics, Astrophysics::Solar and Stellar Astrophysics, Physics::Atmospheric and Oceanic Physics
Motivated by the interface model for the solar dynamo, this paper explores the complex magnetohydrodynamic interactions between convective flows and shear-driven instabilities. Initially, we consider the dynamics of a forced shear flow across a convectively-stable polytropic layer, in the presence of a vertical magnetic field. When the imposed magnetic field is weak, the dynamics are dominated by a shear flow (Kelvin-Helmholtz type) instability. For stronger fields, a magnetic buoyancy instability is preferred. If this stably stratified shear layer lies below a convectively unstable region, these two regions can interact. Once again, when the imposed field is very weak, the dynamical effects of the magnetic field are negligible and the interactions between the shear layer and the convective layer are relatively minor. However, if the magnetic field is strong enough to favour magnetic buoyancy instabilities in the shear layer, extended magnetic flux concentrations form and rise into the convective layer. These magnetic structures have a highly disruptive effect upon the convective motions in the upper layer.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bushby P. J., Houghton S. M., 2005, MNRAS, 362, 313.
    • Bushby P. J., 2006, MNRAS, 371, 772.
    • Bru¨ggen, M., Hillebrandt, W., 2001, MNRAS, 323, 56.
    • Brummell, N., Cline, K., Cattaneo, F., 2002, MNRAS, 329, L73.
    • Cattaneo F., Hughes D. W., 1988, JFM, 196, 323.
    • Cattaneo F., Hughes D. W., 2006, JFM, 553, 401.
    • Cattaneo F., Brummell N., Cline K. S., 2006, MNRAS, 365, 727.
    • Chan, K. H., Liao, X., Zhang, K., Jones, C. A., 2004, A&A, 423, 37.
    • Chandrasekhar, S., 1961, Hydrodynamic and Hydromagnetic Stability, Pub. Dover.
    • Charbonneau, P. & MacGregor, K. B., 1997, ApJ, 486, 502.
    • Christensen-Dalsgaard, J. & Thompson, M. J., 2007, Ch.
    • 3 in The Solar Tachocline, CUP.
    • Dikpati, M. & Gilman, P.A., 2009, Space Science Reviews, DOI 10.1007/s11214-008-9484-3.
    • Dormy E. Soward A. (eds), 2007, Mathematical Aspects of Natural Dynamos, CRC Press.
    • Frank, A., Jones, T. W., Ryu, D., Gaalaas, J. B., 1996, ApJ, 460, 777.
    • Fan Y., 2001, ApJ, 546, 509.
    • Hughes, D. W., 1985, GAFD, 32, 273.
    • Hughes, D. W., Tobias, S. M., 2001, Proc. Roy. Soc. A., 457, 1365.
    • Hughes, D. W., 2007, The Solar Tachocline, pp 275-298 (CUP).
    • K¨apyl¨a P. J., Korpi M. J., Brandenburg, A., 2008, A&A, accepted.
    • Gilman, P.A., 1970, ApJ, 162, 1019.
    • Gilman, P.A. & Cally, P.S., 2007, The Solar Tachocline, pp 243-274 (CUP).
    • Kersal´e E., Hughes D. W., Tobias S. M., 2007, ApJ, 663, L113 Jouve, L., & Brun, A. S., AN, 2007, 328, 10, 1104.
    • Lin, M.-K. Silvers, L. J. & Proctor, M. R. E., 2008, Phys.
    • Lett. A, 373, 1, 69.
    • Matthews P. C., Hughes D. W., Proctor M. R. E., 1995, ApJ, 448, 938.
    • Matthews P. C., Proctor M. R. E. Weiss N. O., JFM, 305, 281.
    • Moffatt H. K., 1978, Magnetic field generation in electrically-conducting fluids, CUP: Cambridge.
    • Newcomb, W. A., 1961, Phys. Fluids, 4 391.
    • Ossendrijver M. 2003, Astron. Astrophys. Rev., 11, 287.
    • Palotti, M. L., Heitsch, F., Zweibel, E. G., Huang, Y.-M., 2008, ApJ, 678, 234.
    • Parker E. N., 1955, ApJ, 121, 491.
    • Parker E. N. 1993, ApJ, 408, 707.
    • Proctor, M.R.E. 2006, EAS Pubs Series, 21, 241-273.
    • Ryu, D., Jones, T. W., Frank, A. 2000, ApJ, 545, 475.
    • Silvers L. J, 2008, Phil. Roy. Trans. Soc. A., 366, 4453.
    • Silvers, L.J., Vasil, G.M., Brummell, N.C. & Proctor, M.R.E., 2009, ApJL, submitted .
    • Spiegel E. A., Zahn J.-P., 1992, Astron. Astrophys., 265, 106.
    • Tobias S. M., Brummell N. H., Clune T. L. Toomre, J., 1998, ApJL, 502, 177.
    • Tobias S. M., Brummell N. H., Clune T. L., Toomre J., 2001, ApJL, 549, 2, 1183.
    • Tobias S. M., Hughes, D. W., 2004, ApJ, 603, 785.
    • Tobias, S.M. & Weiss, N.O., 2007, The Solar Tachocline, pp 319-350 (CUP).
    • Vasil G. M., Brummell N. H., 2008, ApJ, 686, 709.
    • Vasil G. M., Brummell N. H., ApJ, 690, 783.
    • Wissink, J. G., Matthews, P. C., Hughes, D. W., Proctor, M. R. E., 2000, ApJ , 536, 2, 982-997.
    • Zhang, K., Liao, X. Schubert, G., 2004, ApJ, 602, 468.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article