LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Costa, Maria J. (Maria João)
Languages: English
Types: Doctoral thesis
Subjects: QA
Penalized spline regression models are a popular statistical tool for curve fitting\ud problems due to their flexibility and computational efficiency. In particular, penalized\ud cubic spline functions have received a great deal of attention. Cubic splines\ud have good numerical properties and have proven extremely useful in a variety of\ud applications. Typically, splines are represented as linear combinations of basis functions.\ud However, such representations can lack numerical stability or be difficult to\ud manipulate analytically.\ud The current thesis proposes a different parametrization for cubic spline functions\ud that is intuitive and simple to implement. Moreover, integral based penalty\ud functionals have simple interpretable expressions in terms of the components of the\ud parametrization. Also, the curvature of the function is not constrained to be continuous\ud everywhere on its domain, which adds flexibility to the fitting process.\ud We consider not only models where smoothness is imposed by means of a single\ud penalty functional, but also a generalization where a combination of different measures\ud of roughness is built in order to specify the adequate limit of shrinkage for the\ud problem at hand.\ud The proposed methodology is illustrated in two distinct regression settings.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Introduction 1 1.1 Penalized Spline Regression: A Brief Review . . . . . . . . . . . . . . 1 1.2 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
    • 2 Spline Models 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Spline Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . 11
    • 4 The Value-First Derivative Parametrization 34 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 Definition of the Parametrization . . . . . . . . . . . . . . . . . . . . 35 4.3 Penalty Implementation and Interpretation . . . . . . . . . . . . . . . 38 4.4 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
    • 5 Simulation Study 46 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 Bayesian Inference via MCMC . . . . . . . . . . . . . . . . . . . . . . 48 5.2.1 Single Penalty Models . . . . . . . . . . . . . . . . . . . . . . 48 5.2.2 Double Penalty Models . . . . . . . . . . . . . . . . . . . . . . 50 5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8 Further Topics 108 8.1 Spatially Adaptive Smoothing . . . . . . . . . . . . . . . . . . . . . . 109 8.2 Bivariate Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.3 Full Bayesian Inference for Double Penalty Models . . . . . . . . . . . 114 B Markov Chain Monte Carlo Algorithms 125 B.1 The Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 B.2 The Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . . . . . 127 122 129 135 7.1 Degrees of freedom (d.f.) and Akaike's information criteria (AIC) for different model specifications. . . . . . . . . . . . . . . . . . . . . . . 103 7.2 bilirubin (left plot) and age (right plot) corresponding to observed failures vs time t (in days). The solid lines in both plots correspond to 'lowess' smooths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 AIC(i2,i1) = -2*partial_likelihoodMD(eta,indexes, XcovFailures,Xcov)+(2*TRtotal(i2,i1));
    • Abrahamowicz, M., MacKenzie, T. & Esdaile, J. M. (1996). Time-dependent hazard ratio: modelling and hypothesis testing with application in lupus nephritis. Journal of the American Statistical Association 91 1432-1439.
    • Andersen, P. K. & Gill, R. D. (1982). Cox's regression model for counting processes: A large sample study. The Annals of Statistics 10 1100-1120.
    • Baladandayuthapani, V., Mallick, B. K. & Carroll, R. J. (2005). Spatially adaptive Bayesian penalized regression splines (P-splines). Journal of Computational and Graphical Statistics 14 378-394.
    • Berndt, E. R. (1991). The Practice of Econometrics: Classical and Comtemporary. Addison-Wesley.
    • Breslow, N. E. (1972). Discussion of the paper by D. R. Cox. Journal of the Royal Statistical Society, Series B 34 216-217.
    • Brezger, A. & Lang, S. (2006). Generalized structured additive regression based on Bayesian P-splines. Computational Statistics and Data Analysis 50 957-991.
    • Burden, R. L. & Faires, J. D. (2004). Numerical Analysis. Brooks-Cole Publishing, eighth ed.
    • Carlin, B. P. & Louis, T. A. (2000). Bayes and Empirical Bayes Methods for Data Analysis. Chapman & Hall.
    • Casella, G. & George, E. I. (1990). Explaining the Gibbs sampler. The American Statistician 46 167-174.
    • Chib, S. & Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistician 49 327-335.
    • Denison, D. G. T., Mallick, B. K. & Smith, A. F. M. (1998a). Automatic Bayesian curve fitting. Journal of the Royal Statistical Society, Series B 60 333-350.
    • Denison, D. G. T., Mallick, B. K. & Smith, A. F. M. (1998b). Bayesian MARS. Statistics and Computing 8 337-346.
    • Dikshit, H. P. & Powar, P. (1981). On deficient cubic spline interpolation. Journal of Approximation Theory 31 99-106.
    • Dubeau, F. & Savoie, J. (1999). On best error bounds for deficient splines. In CRM Proceedings and Lecture Notes, vol. 18. Centre de Recherches Math´ematiques, 33-39.
    • Eilers, P. H. C. & Goeman, J. J. (2004). Enhancing scatterplots with smoothed densities. Bioinformatics 20 623-628.
    • Eilers, P. H. C. & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science 11 89-121.
    • Friedman, J. & Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association 76 817-823.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article