Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fletcher, JK; Mason, S; Jakob, C (2016)
Publisher: American Meteorological Society
Languages: English
Types: Article

Classified by OpenAIRE into

mesheuropmc: sense organs, complex mixtures
A climatology of clouds within marine cold air outbreaks, primarily using long-term satellite observations, is presented. Cloud properties between cold air outbreaks in different regions in both hemispheres are compared. In all regions marine cold air outbreak clouds tend to be low level with high cloud fraction and low-to-moderate optical thickness. Stronger cold air outbreaks have clouds that are optically thicker, but not geometrically thicker, than those in weaker cold air outbreaks. There is some evidence that clouds deepen and break up over the course of a cold air outbreak event. The top-of-the-atmosphere longwave cloud radiative effect in cold air outbreaks is small because the clouds have low tops. However, their surface longwave cloud radiative effect is considerably larger. The rarity of cold air outbreaks in summer limits their shortwave cloud radiative effect. They do not contribute substantially to global shortwave cloud radiative effect and are, therefore, unlikely to be a major source of shortwave cloud radiative effect errors in climate models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Agee, E. M., 1987: Mesoscale cellular convection over the oceans. Dyn. Atmos. Oceans, 10, 317-341, doi:10.1016/0377-0265(87)90023-6.
    • Atkinson, B., and J. Wu Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403-431, doi:10.1029/ 96RG02623.
    • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/ 2005GL023851.
    • --, and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261-268, doi:10.1038/ngeo2398.
    • Bracegirdle, T. J., and E. W. Kolstad, 2010: Climatology and variability of Southern Hemisphere marine cold-air outbreaks. Tellus, 62A, 202-208, doi:10.1111/j.1600-0870.2009.00431.x.
    • Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys., 18, 683-697, doi:10.1029/RG018i003p00683.
    • Brümmer, B., 1999: Roll and cell convection in wintertime Arctic cold-air outbreaks. J. Atmos. Sci., 56, 2613-2636, doi:10.1175/ 1520-0469(1999)056,2613:RACCIW.2.0.CO;2.
    • --, and S. Pohlmann, 2000: Wintertime roll and cell convection over Greenland and Barents Sea regions: A climatology. J. Geophys. Res., 105, 15 559-15 566, doi:10.1029/ 1999JD900841.
    • Ceccaldi, M., J. Delanoë, R. J. Hogan, N. L. Pounder, A. Protat, and J. Pelon, 2013: From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations. J. Geophys. Res. Atmos., 118, 7962-7981, doi:10.1002/jgrd.50579.
    • Ceppi, P., Y.-T. Hwang, D. M. Frierson, and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett., 39, L19708, doi:10.1029/2012GL053115.
    • Chubb, T. H., J. B. Jensen, S. T. Siems, and M. J. Manton, 2013: In situ observations of supercooled liquid clouds over the Southern Ocean during the HIAPER pole-to-pole observation campaigns. Geophys. Res. Lett., 40, 5280-5285, doi:10.1002/grl.50986.
    • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/ qj.828.
    • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSatCALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/ 2009JD012346.
    • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233-254, doi:10.1175/ JCLI3998.1.
    • --, R. J. Cotton, K. McBeath, A. P. Lock, S. Webster, and R. P. Allan, 2014: Improving a convection-permitting model simulation of a cold air outbreak. Quart. J. Roy. Meteor. Soc., 140, 124-138, doi:10.1002/qj.2116.
    • Fletcher, J. K., S. L. Mason, and C. Jakob, 2016: The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres. J. Climate, 29, 1999-2014, doi:10.1175/JCLI-D-15-0268.1.
    • Grise, K. M., L. M. Polvani, G. Tselioudis, Y. Wu, and M. D. Zelinka, 2013: The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddydriven jet in the southern hemisphere. Geophys. Res. Lett., 40, 3688-3692, doi:10.1002/grl.50675.
    • Huang, Y., S. T. Siems, M. J. Manton, A. Protat, and J. Delanoë, 2012: A study on the low-altitude clouds over the Southern Ocean using the DARDAR-MASK. J. Geophys. Res., 117, D18204, doi:10.1029/2012JD017800.
    • Hwang, Y.-T., and D. M. Frierson, 2013: Link between the doubleintertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 4935- 4940, doi:10.1073/pnas.1213302110.
    • Jin, Y., and W. B. Rossow, 1997: Detection of cirrus overlapping low-level clouds. J. Geophys. Res., 102, 1727-1737, doi:10.1029/ 96JD02996.
    • Kolstad, E. W., and T. J. Bracegirdle, 2008: Marine cold-air outbreaks in the future: An assessment of IPCC AR4 model results for the Northern Hemisphere. Climate Dyn., 30, 871-885, doi:10.1007/s00382-007-0331-0.
    • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, doi:10.1029/2009JD013422.
    • Mason, S., C. Jakob, A. Protat, and J. Delanoë, 2014: Characterizing observed midtopped cloud regimes associated with Southern Ocean shortwave radiation biases. J. Climate, 27, 6189-6203, doi:10.1175/JCLI-D-14-00139.1.
    • McCoy, D. T., D. L. Hartmann, and D. P. Grosvenor, 2014: Observed Southern Ocean cloud properties and shortwave reflection. Part II: Phase changes and low cloud feedback. J. Climate, 27, 8858-8868, doi:10.1175/JCLI-D-14-00288.1.
    • Muhlbauer, A., I. L. McCoy, and R. Wood, 2014: Climatology of stratocumulus cloud morphologies: Microphysical properties and radiative effects. Atmos. Chem. Phys., 14, 6695-6716, doi:10.5194/acp-14-6695-2014.
    • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 1878-1893, doi:10.1175/1520-0469(1990)047,1878: DOTOTA.2.0.CO;2.
    • Naud, C. M., D. J. Posselt, and S. C. Van Den Heever, 2012: Observational analysis of cloud and precipitation in midlatitude cyclones: Northern versus Southern Hemisphere warm fronts. J. Climate, 25, 5135-5151, doi:10.1175/JCLI-D-11-00569.1.
    • --, J. F. Booth, D. J. Posselt, and S. C. van den Heever, 2013: Multiple satellite observations of cloud cover in extratropical cyclones. J. Geophys. Res. Atmos., 118, 9982-9996, doi:10.1002/ jgrd.50718.
    • Papritz, L., S. Pfahl, H. Sodemann, and H. Wernli, 2015: A climatology of cold air outbreaks and their impact on air-sea heat fluxes in the high-latitude South Pacific. J. Climate, 28, 342- 364, doi:10.1175/JCLI-D-14-00482.1.
    • Protat, A., and Coauthors, 2014: Reconciling ground-based and space-based estimates of the frequency of occurrence and radiative effect of clouds around Darwin, Australia. J. Appl. Meteor. Climatol., 53, 456-478, doi:10.1175/ JAMC-D-13-072.1.
    • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 2-20, doi:10.1175/ 1520-0477(1991)072,0002:ICDP.2.0.CO;2.
    • --, and --, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261-2287, doi:10.1175/ 1520-0477(1999)080,2261:AIUCFI.2.0.CO;2.
    • Schneider, S. H., 1972: Cloudiness as a global climatic feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. J. Atmos. Sci., 29, 1413-1422, doi:10.1175/1520-0469(1972)029,1413: CAAGCF.2.0.CO;2.
    • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Climate, 19, 3354-3360, doi:10.1175/JCLI3799.1.
    • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of presentday and twenty-first-century energy budgets of the Southern Oceans. J. Climate, 23, 440-454, doi:10.1175/ 2009JCLI3152.1.
    • Tselioudis, G., and W. B. Rossow, 2006: Climate feedback implied by observed radiation and precipitation changes with midlatitude storm strength and frequency. Geophys. Res. Lett., 33, L02704, doi:10.1029/2005GL024513.
    • --, Y. Zhang, and W. B. Rossow, 2000: Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes. J. Climate, 13, 312-327, doi:10.1175/1520-0442(2000)013,0312:CARVAW.2.0.CO;2.
    • --, W. Rossow, Y. Zhang, and D. Konsta, 2013: Global weather states and their properties from passive and active satellite cloud retrievals. J. Climate, 26, 7734-7746, doi:10.1175/ JCLI-D-13-00024.1.
    • Wetherald, R., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 1397-1416, doi:10.1175/1520-0469(1988)045,1397:CFPIAG.2.0.CO;2.
    • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 3715- 3735, doi:10.1175/JCLI-D-11-00248.1.
    • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/ 2003JD004457.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article