LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
De Martino, A.; Thorwart, M.; Egger, R.; Graham, R. (2004)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: QC, Condensed Matter - Statistical Mechanics

Classified by OpenAIRE into

arxiv: Condensed Matter::Quantum Gases, Condensed Matter::Disordered Systems and Neural Networks
We study one-dimensional disordered bosons with strong repulsive interactions. A Bose-Fermi mapping expresses this problem in terms of noninteracting Anderson-localized fermions, whereby known results for the distribution function of the local density of states, the spectral statistics, and density-density correlations can be transferred to this new domain of applicability. We show that disorder destroys bosonic quasi-long-range order by calculating the momentum distribution, and comment on the experimental observability of these predictions in ultracold atomic gases.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 5 0 0 2 3 1 A. De Martino,1 M. Thorwart,1 R. Egger,1 and R. Graham2 1Institut fu¨r Theoretische Physik, Heinrich-Heine-Universit¨at, D-40225 Du¨sseldorf, Germany 2Fachbereich Physik, Universit¨at Duisburg-Essen, D-45117 Essen, Germany (Dated: February 2, 2008)
    • [1] M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
    • [2] D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, and P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).
    • [3] M. Greiner, O. Mandel, T. Esslinger, T.W. H¨ansch, and I. Bloch, Nature 415, 39 (2002).
    • [4] P. Horak, J.-Y. Courtois, and G. Grynberg, Phys. Rev. A 58, 3953 (2000).
    • [5] A. Sanpera, A. Kantian, L. Sanchez-Palencia, J. Zakrzewski, and M. Lewenstein, Phys. Rev. Lett. 93, 040401 (2004).
    • [6] B. Damski, J. Zakrzewski, L. Santos, P. Zoller, and M. Lewenstein, Phys. Rev. Lett. 91, 080403 (2003).
    • [7] R. Folman, P. Kru¨ger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002).
    • [8] L. Zhang and M. Ma, Phys. Rev. B 45, 4855 (1992).
    • [9] R.T. Scalettar, G.G. Batrouni, and G.T. Zimanyi, Phys. Rev. Lett. 66, 3144 (1991).
    • [10] K.G. Singh and D.S. Rokhsar, Phys. Rev. B 46, 3002 (1992).
    • [11] A.V. Lopatin and V.M. Vinokur, Phys. Rev. Lett. 88, 235503 (2002).
    • [12] N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. 92, 015703 (2004).
    • [13] T. Giamarchi and H.J. Schulz, Europhys. Lett. 3, 1287 (1987); Phys. Rev. B 37, 325 (1988).
    • [14] S. Rapsch, U. Schollw¨ock, and W. Zwerger, Europhys. Lett. 46, 559 (1999).
    • [15] L. Tonks, Phys. Rev. 50, 955 (1936).
    • [16] M. Girardeau, J. Math. Phys. 1, 516 (1960).
    • [17] E.H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
    • [18] A. Lenard, J. Math. Phys. 5, 930 (1964).
    • [19] H.G. Vaidya and C.A. Tracy, Phys. Rev. Lett. 42, 3 (1979). See also D.M. Gangardt, J. Phys. A: Math. Gen. 37, 9335 (2004).
    • [20] F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).
    • [21] D.S. Petrov, G.V. Shlyapnikov, and J.T.M. Walraven, Phys. Rev. Lett. 85, 3745 (2000).
    • [22] V. Dunjko, V. Lorent, and M. Olshanii, Phys. Rev. Lett. 86, 5413 (2001).
    • [23] B. Paredes et al., Nature 429, 277 (2004).
    • [24] T. Kinoshita, T. Wenger, and D.S. Weiss, Science 305, 112 (2004).
    • [25] A. G¨orlitz et al., Phys. Rev. Lett. 87, 130402 (2001).
    • [26] H. Moritz, T. St¨oferle, M. K¨ohl, and T. Esslinger, Phys. Rev. Lett. 91, 250402 (2003).
    • [27] I.M. Lifshits, S.A. Gredeskul, and L.A. Pastur, Introduction to the theory of disordered systems (John Wiley & Sons, New York, 1988).
    • [28] S. Richard et al., Phys. Rev. Lett. 91, 010405 (2003).
    • [29] A. Klein and J.F. Perez, Comm. Math. Phys. 128, 99 (1990).
    • [30] L.P. Gor'kov, O.N. Dorokhov, and F.V. Prigara, Zh. Eksp. Teor. Fiz. 84, 1440 (1983) [Sov. Phys. JETP 57, 838 (1983)]; Zh. Eksp. Teor. Fiz. 85, 1470 (1983) [Sov. Phys. JETP 58, 852 (1983)].
    • [31] B.L. Al'tshuler and V.N. Prigodin, Zh. Eksp. Teor. Fiz. 95, 348 (1989) [Sov. Phys. JETP 68, 198 (1989)].
    • [32] K.B. Efetov, Supersymmetry in disorder and chaos (Cambridge University Press, 1997).
    • [33] J. Stenger et al., Phys. Rev. Lett. 82, 4569 (1999).
    • [34] T. St¨oferle, H. Moritz, C. Schori, M. K¨ohl, and T. Esslinger, Phys. Rev. Lett. 92, 130403 (2004).
    • [35] E.P. Nachmedov, V.N. Prigodin, and Yu.A. Firsov, Zh. Eksp. Teor. Fiz. 92, 2133 (1987) [Sov. Phys. JETP 65, 1202 (1987)].
    • [36] T. Cheon and T. Shigehara, Phys. Rev. Lett. 82, 2536 (1999).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article