Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Morey, Richard D.; Romeijn, Jan-Willem; Rouder, Jeffrey N. (2016)
Publisher: Elsevier
Journal: Journal of Mathematical Psychology
Languages: English
Types: Article
Subjects: Applied Mathematics, BF, Psychology(all)
A core aspect of science is using data to assess the degree to which data provide evidence for competing claims, hypotheses, or theories. Evidence is by definition something that should change the credibility of a claim in a reasonable person’s mind. However, common statistics, such as significance testing and confidence intervals have no interface with concepts of belief, and thus it is unclear how they relate to statistical evidence. We explore the concept of statistical evidence, and how it can be quantified using the Bayes factor. We also discuss the philosophical issues inherent in the use of the Bayes factor.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aitkin, M. (1991). Posterior Bayes factors. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 53(1), 111-142.
    • Atkinson, A. C. (1978). Posterior probabilities for choosing a regression model. Biometrika, 65(1), 39-48.
    • Barrick, J. E., Yu, D. S., Yoon, S. H., Jeong, H., Oh, T. K., Schneider, D., et al. (2009). Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature, 461(7268), 1243-1247.
    • Bartlett, M. S. (1957). A comment on D.V. Lindley's statistical paradox. Biometrika, 44, 533-534.
    • Berger, J. O. (2006). The case for objective Bayesian analysis. Bayesian Analysis, 1, 385-402.
    • Berger, J.O., & Bernardo, J.M. (1992). On the development of reference priors. In Bayesian statistics 4. Proceedings of the fourth valencia international meeting (pp. 35-49).
    • Berger, J. O., & Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91(433), 109-122.
    • Berger, J. O., & Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: The median intrinsic Bayes factor. Sankhya¯ : The Indian Journal of Statistics, Series B (1960-2002), 60(1), 1-18.
    • Berger, J. O., & Sellke, T. (1987). Testing a point null hypothesis: The irreconcilability of p values and evidence. Journal of the American Statistical Association, 82(397), 112-122.
    • Berger, J. O., & Wolpert, R. L. (1988). The likelihood principle (2nd ed.). Hayward, CA: Institute of Mathematical Statistics.
    • Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal of the Royal Statistical Society. Series B. Methodological, 41, 113-128.
    • Bird, A. (1998). Philosophy of science. Routledge.
    • Bogen, J., & Woodward, J. (1988). Saving the phenomena. Philosophical Review, 97(3), 303-352.
    • Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In R. L. Launer, & G. N. Wilkinson (Eds.), Robustness in statistics: proceedings of a workshop (pp. 201-236). Academic Press.
    • Cox, R. T. (1946). Probability, frequency and reasonable expectation. American Journal of Physics, 14, 1-13.
    • Dawid, P. (1982). The well-calibrated Bayesian. Journal of the American Statistical Association, 77(379), 605-610.
    • Dawson, P., Han, I., Cox, M., Black, C., & Simmons, L. (2007). Residence time and food contact time effects on transfer of Salmonella Typhimurium from tile, wood and carpet: testing the five-second rule. Journal of Applied Microbiology, 102(4), 945-953.
    • de Finetti, B. (1995). The logic of probability. Philosophical Studies, 77, 181-190.
    • DeGroot, M. H. (1982). Lindley's paradox: Comment. Journal of the American Statistical Association, 77(378), 336-339.
    • Dickey, J. M., & Lientz, B. P. (1970). The weighted likelihood ratio, sharp hypotheses about chances, the order of a Markov chain. The Annals of Mathematical Statistics, 41(1), 214-226.
    • Dunlap, R. E. (2013). Climate change skepticism and denial: An introduction. American Behavioral Scientist, 57(6), 691-698.
    • Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review, 70, 193-242.
    • Fisher, R. A. (1930). Inverse probability. Proceedings of the Cambridge Philosophical Society, 28, 528-535.
    • Fisher, R. A. (1955). Statistical methods and scientific induction. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 17, 69-78.
    • Fox, J. (2011). Arguing about the evidence: A logical approach. In P. Dawid, W. Twining, & M. Vasilaski (Eds.), Evidence, inference and enquiry. London: The British Academy.
    • Gelman, A., & Rubin, D. B. (1995). Avoiding model selection in Bayesian social research. In P. V. Marsden (Ed.), Sociological methodology 1995 (pp. 165-173). Oxford, UK: Blackwell.
    • Gelman, A., & Shalizi, C. R. (2013). Philosophy and the practice of Bayesian statistics. British Journal of Mathematical and Statistical Psychology, 66, 57-64.
    • Gigerenzer, G., Krauss, S., & Vitouch, O. (2004). The null ritual: What you always wanted to know about significance testing but were afraid to ask. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences. Thousand Oaks, CA: Sage.
    • Goldstein, M. (2006). Subjective Bayesian analysis: Principles and practice. Bayesian Analysis, 1, 403-420.
    • Good, I. J. (1979). Studies in the history of probability and statistics. XXXVII A.M. Turing's statistical work in World War II. Biometrika, 66(2), 393-396.
    • Good, I. J. (1985). Weight of evidence: A brief survey. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, & A. F. M. Smith (Eds.), Bayesian statistics 2 (pp. 249-270). North-Holland, Elsevier Science Publishers B.V.
    • Good, I. (1988). The interface between statistics and philosophy of science. Statistical Science, 3(4), 386-397.
    • Grünwald, P. (2000). Model selection based on minimum description length. Journal of Mathematical Psychology, 44(1), 133-152.
    • Hacking, I. (1965). Logic of statistical inference. Cambridge, England: Cambridge University Press.
    • Haller, H., & Krauss, S. (2002). Misinterpretations of significance: A problem students share with their teachers? Methods of Psychological Research Online, 7.
    • Halpern, J. (2003). Reasoning about uncertainty. MIT Press.
    • Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E.-J. (2014). Robust misinterpretation of confidence intervals. Psychonomic Bulletin & Review, 21(5), 1157-1164.
    • Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 186(1007), 453-461.
    • Jeffreys, H. (1961). Theory of probability (3rd ed.). New York: Oxford University Press.
    • Jefferys, W. H., & Berger, J. O. (1991). Sharpening Ockham's razor on a Bayesian strop. Technical Report.
    • Johnson, V. E., & Rossell, D. (2010). On the use of non-local prior desities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72, 143-170.
    • Joyce, J. M. (1998). A nonpragmatic vindication of probabilism. Philosophy of Science, 65, 575-603.
    • Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of representativeness. Cognitive Psychology, 3, 430-454.
    • Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773-795.
    • Kelly, T. (2014). Evidence. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Autumn 2014 Edition).
    • Kuhn, T. (1962). The structure of scientific revolutions. University of Chicago Press.
    • Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D. B., Vose, R. S., et al. (2011). An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. Journal of Geophysical Research: Atmospheres, 116(D19), n/a-n/a.
    • Liang, F., Paulo, R., Molina, G., Clyde, M. A., & Berger, J. O. (2008). Mixtures of g-priors for Bayesian variable selection. Journal of the American Statistical Association, 103, 410-423.
    • Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizability. Journal of Mathematical Psychology, 56, 362-375.
    • Low, I., Lykken, J., & Shaughnessy, G. (2012). Have we observed the Higgs boson (imposter)? Physical Review D-Particles, Fields, Gravitation and Cosmology, 86.
    • Matlin, M. W. (2003). The psychology of women. Belmont, CA: Thompson/ Wadsworth.
    • Matthews, R. A. J. (1995). Tumbling toast, Murphy's law, and fundamental constants. European Journal of Physics, 16, 172-175.
    • Morey, R. D., Romeijn, J.-W., & Rouder, J. N. (2013). The humble Bayesian: model checking from a fully Bayesian perspective. British Journal of Mathematical and Statistical Psychology, 66, 68-75.
    • Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hypotheses. Psychological Methods, 16, 406-419.
    • Morey, R.D., & Rouder, J.N. (2015). BayesFactor 0.9.12-2. Comprehensive R Archive Network.
    • Oakes, M. (1986). Statistical inference: a commentary for the social and behavioral sciences. Chichester: Wiley.
    • O'Hagan, A. (1995). Fractional Bayes factors for model comparison. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 57(1), 99-138.
    • Pettigrew, R. (2013). Accuracy and evidence. Dialectica, 67(4), 579-596.
    • Popper, K. (1959). Logic of scientific discovery. London: Routledge Classics, 2002 elibrary edition.
    • Psillos, S. (1999). Scientific realism: how science tracks truth. Routledge.
    • Ramsey, F. P. (1931). Truth and probability. In R. Braithwaite (Ed.), The foundations of mathematics and other logical essays (pp. 156-198). New York: Harcourt, Brace and Company, 1999 electronic edition.
    • Romeijn, J.-W. (2013). Abducted by Bayesians. Journal of Applied Logic, 11(4), 430-439.
    • Romeijn, J.-W. (2014). Philosophy of statistics. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Autumn 2014 Edition).
    • Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56, 356-374.
    • Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t-tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 16, 225-237.
    • Royall, R. (1997). Statistical evidence: a likelihood paradigm. New York: CRC Press.
    • Sanborn, A. N., & Hills, T. T. (2014). The frequentist implications of optional stopping on Bayesian hypothesis tests. Psychonomic Bulletin & Review, 21, 283-300.
    • Schervish, M. J. (1995). Theory of statistics. New York: Springer-Verlag.
    • Shibley Hyde, J. (2005). The gender similarities hypothesis. American Psychologist, 60, 581-592.
    • Spiegelhalter, D. J., & Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 44(3), 377-387.
    • Vanpaemel, W. (2010). Prior sensitivity in theory testing: An apologia for the Bayes factor. Journal of Mathematical Psychology, 54, 491-498.
    • Veltman, F. (1996). Defaults in update semantics. Journal of Philosophical Logic, 25(3), 221-261.
    • Wagenmakers, E.-J., Lee, M. D., Lodewyckx, T., & Iverson, G. (2008). Bayesian versus frequentist inference. In H. Hoijtink, I. Klugkist, & P. Boelen (Eds.), Practical Bayesian approaches to testing behavioral and social science hypotheses (pp. 181-207). New York: Springer.
    • Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage-Dickey method. Cognitive Psychology, 60, 158-189.
    • Yu, E. C., Sprenger, A. M., Thomas, R. P., & Dougherty, M. R. (2014). When decision heuristics and science collide. Psychonomic Bulletin & Review,.
    • Zellner, A., & Siow, A. (1980). Posterior odds ratios for selected regression hypotheses. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, & A. F. M. Smith (Eds.), Bayesian statistics: proceedings of the first international meeting held in valencia (Spain) (pp. 585-603). University of Valencia.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Bayesian Methodology for As...

Cite this article