LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Laroze, D.; Pleiner, H. (2015)
Publisher: Elsevier B.V.
Journal: Communications in Nonlinear Science and Numerical Simulation
Languages: English
Types: Article
Subjects: Applied Mathematics, Numerical Analysis, Modelling and Simulation

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
We report theoretical and numerical results on thermal convection of a magnetic fluid in a viscoelastic carrier liquid. The viscoelastic properties are described by a general nonlinear viscoelastic model that contains as special cases the standard phenomenological constitutive equations for the stress tensor. In order to explore numerically the system we perform a truncated Galerkin expansion obtaining a generalized Lorenz system with ten modes. We find numerically that the system has stationary, periodic and chaotic regimes. We establish phase diagrams to identify the different dynamical regimes as a function of the Rayleigh number and the viscoelastic material parameters.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Cross MC, Hohenberg PC. Rev Mod Phys 1993;65:851.
    • [2] Kolodner P. J Non-Newtonian Fluid Mech 1998;75:167.
    • [3] Martinez-Mardones J, Tiemann R, Walgraef D. J Non-Newtonian Fluid Mech 2000;93:1.
    • [4] Laroze D, Martinez-Mardones J, Perez-Garcia C. Int J Bifurcation Chaos 2005;15:3329.
    • [5] Wang S, Tan WC. Phys Lett A 2008;372:3046.
    • [6] Awad FG, Sibanda Sandile P, Motsa S. Appl Math Modell 2010;34:3509.
    • [7] Kumar A, Bhadauria BS. Phys Fluids 2011;23:054101.
    • [8] Wang S, Tan WC. Int J Heat Fluid Flow 2011;32:88.
    • [9] Delenda N, Hirata SC, Ouarzazi MN. J Non-Newtonian Fluid Mech 2012;181-182:11.
    • [10] Laroze D, Martinez-Mardones J, Pérez LM. Int J Bifurcation Chaos 2010;20:235.
    • [11] Laroze D, Martinez-Mardones J, Pérez LM, Rojas RG, Mag J. Mag Mat 2010;322:3576.
    • [12] Pérez LM, Bragard J, Laroze D, Martinez-Mardones J, Pleiner H. J Mag Mag Mat 2011;323:323.
    • [13] Laroze D, Pérez LM, Bragard J, Cordaro EG, Martinez-Mardones J. Magnetohydrodynamics 2011;47:159.
    • [14] Laroze D, Martinez-Mardones J, Pleiner H. Eur Phys J Spec Top 2013;219:71.
    • [15] Ryskin A, Pleiner H. Phys Rev E 2004;69:046301.
    • [16] Laroze D, Martinez-Mardones J, Bragard J, Vargas P. Physica A 2006;371:46.
    • [17] Berkovsky BM, Medvdev VF, Krakov MS. The magnetic fluids, engineering application. Oxford: Oxford University Press; 1973.
    • [18] Mahmoudi M et al. J Phys Chem C 2009;113:2322.
    • [19] Kim EH, Ahn Y, Lee HS. J Alloys Compd 2007;434:633.
    • [20] Alexiou C et al. J Drug Targeting 2003;11:139.
    • [21] Alexiou C et al. J Magn Magn Mater 2002;252:363.
    • [22] Alexiou C et al. Cancer Res 2000;60:6641.
    • [23] Yu Borin D, Odenbach S. J Phys: Condens Matter 2009;21:246002.
    • [24] Lira SA, Miranda JA. Phys Rev E 2009;80:046313.
    • [25] Lira SA, Miranda JA. Phys Rev E 2009;79:046303.
    • [26] de Gans BJ, Blom C, Philipse AP, Mellema J. Phys Rev E 1999;60:4518.
    • [27] Odenbach S, Mag J. Mag Mat 1999;201:149.
    • [28] Müller HW, Liu M. Phys Rev E 2001;64:061405.
    • [29] Odenbach S. J Phys: Condens Matter 2004;16:R1135.
    • [30] Ilg P, Kröger M, Hess S. Phys Rev E 2005;71:031205.
    • [31] Müller O, Hahn D, Liu M. J Phys: Condens Matter 2006;18:S2623.
    • [32] Shahnazian H et al. J Phys D: Appl Phys 2009;42:205004.
    • [33] Popel AS, Johnson PC. Annu Rev Fluid Mech 2005;37:43.
    • [34] Baskurt OK, Meiselman HJ. Semin Throm Hemost 2003;29:435.
    • [35] Bishop JJ. Biorheology 2001;38:263.
    • [36] Braithwaite D, Beaugnon E, Tournier R. Nature 1991;354:134.
    • [37] Odenbach S. Phys Fluids 1994;6:2535.
    • [38] Odenbach S, Schwahn D, Stierstadt K. Z Phys B 1995;96:567.
    • [39] Odenbach S. J Magn Magn Mater 1995;149:155.
    • [40] Yamaguchi H, Kobori I, Uehata Y, Shimada K. J Magn Magn Mater 1999;201:264.
    • [41] Odenbach S. J Phys: Condens Matter 2003;15:S1497.
    • [42] Odenbach S, VZˇlker Th. J Magn Magn Mater 2005;289:122.
    • [43] Engler H, Odenbach S. J Phys: Condens Matter 2008;20:204135.
    • [44] Bednarz T, Lei C, Patterson JC. Int Commun Heat Mass Trans 2009;36:97.
    • [45] Bednarz T, Patterson JC, Lei C, Ozoe H. Int Commun Heat Mass Trans 2009;36:781.
    • [46] Bozhko A, Putin G. Microgravity Sci Technol 2009;21:89.
    • [47] Lajvardi M, Moghimi-Rad J, Hadi I, Gavili A, Dallali Isfahani T, Zabihi F, et al. J Magn Magn Mater 2010;322:3508.
    • [48] Pleiner H, Liu M, Brand HR. Rheol Acta 2004;43:502. and references therein.
    • [49] Müller O. [Ph.D. thesis]. University Tübingen; 2006.
    • [50] Pleiner H, Liu M, Brand HR. In: Calderer M-C, Terentjev E, editors. IMA volume in mathematics and its applications. Modeling of soft matter, vol. 141. Springer; 2005. p. 99.
    • [51] Laroze D, Pleiner H. In: Proceedings of the 22nd nordic rheology conference, Copenhagen 2013, Annu Trans Nordic Rheol Soc, vol. 21; 2013. p. 35.
    • [52] Finlayson BA. J Fluid Mech 1970;40:753.
    • [53] Lorenz EN. J Atmos Sci 1963;20:130.
    • [54] Laroze D, Siddheshwar PG, Pleiner H. Commun Nonlinear Sci Numer Simul 2013;18:2436.
    • [55] Khayat RE. J Non-Newtonian Fluid Mech 1994;53:227.
    • [56] Khayat RE. Phys Rev E 1995;51:380.
    • [57] Khayat RE. J Non-Newtonian Fluid Mech 1995;58:331.
    • [58] Abu-Ramadan E, Hay JM, Khayat RE. J Non-Newtonian Fluid Mech 2003;115:79.
    • [59] Wolf A, Swift JB, Swinney HL, Vastano JA. Physica D 1985;16:285.
    • [60] Bonatto C, Gallas JAC. Phys Rev E 2007;75:055204(R); Bonatto C, Gallas JAC. Philos Trans R Soc A 2008;366:505; Bonatto C, Gallas JAC, Ueda Y. Phys Rev E 2008;77:026217; Bonatto C, Gallas JAC. Phys Rev Lett 2008;101:054101.
    • [61] Laroze D, Bragard J, Suarez OJ, Pleiner H. IEEE Trans Mag 2011;47:3032.
    • [62] Bragard J, Pleiner H, Suarez OJ, Vargas P, Gallas JAC, Laroze D. Phys Rev E 2011;84:037202.
    • [63] Laroze D, Becerra-Alonso D, Gallas JAC, Pleiner H. IEEE Trans Mag 2012;48:3567.
    • [64] Pérez LM, Suarez OJ, Laroze D, Mancini HL. Cent Eur J Phys 2013;11:1629.
    • [65] Sparrow C. The Lorenz equations: bifurcations, chaos, and strange attractors. Berlin: Springer; 1982.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    42
    42%
  • No similar publications.

Share - Bookmark

Cite this article