LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Magnall, JM; Gleeson, SA; Stern, RA; Newton, RJ; Poulton, SW; Paradis, S (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
Highly positive δ³⁴S values in sulphide minerals are a common feature of shale hosted massive sulphide deposits (SHMS). Often this is attributed to near quantitative consumption of seawater sulphate, and for Paleozoic strata of the Selwyn Basin (Canada), this is thought to occur during bacterial sulphate reduction (BSR) in a restricted, euxinic water column. In this study, we focus on drill-core samples of sulphide and barite mineralisation from two Late Devonian SHMS deposits (Tom and Jason, Macmillan Pass, Selwyn Basin), to evaluate this euxinic basin model. The paragenetic relationship between barite, pyrite and hydrothermal base metal sulphides has been determined using transmitted and reflected light microscopy, and backscatter electron imaging. This petrographic framework provides the context for in-situ isotopic microanalysis (secondary ion mass spectrometry; SIMS) of barite and pyrite. These data are supplemented by analyses of δ³⁴S values for bulk rock pyrite (n = 37) from drill-core samples of un-mineralised (barren), siliceous mudstone, to provide a means by which to evaluate the mass balance of sulphur in the host rock. Three generations of barite have been identified, all of which pre-date hydrothermal input. Isotopically, the three generations of barite have overlapping distributions of δ³⁴S and δ¹⁸O values (+22.5‰ to +33.0‰ and +16.4‰ to +18.3‰, respectively) and are consistent with an origin from modified Late Devonian seawater. Radiolarian tests, enriched in barium, are abundant within the siliceous mudstones, providing evidence that primary barium enrichment was associated with biologic activity. We therefore propose that barite formed following remobilisation of productivity-derived barium within the sediment, and precipitated within diagenetic pore fluids close to the sediment water interface. Two generations of pyrite are texturally associated with barite: framboidal pyrite (py-I), which has negative δ³⁴S values (−23‰ to −28‰; n = 9), and euhedral pyrite (py-II), which has markedly more positive δ³⁴S values (+8‰ to +26‰; n = 86). We argue that stratiform pyrite and barite developed along diagenetic redox fronts, where the isotopic relationships (δ³⁴Spyrite ≈ δ³⁴Sbarite) are explained by anaerobic oxidation of methane coupled to sulphate reduction (AOM-SR). Furthermore, the relatively narrow distribution of δ³⁴Sbarite values is consistent with an open system model of sulphate reduction, in which reduced sulphur generation occurred with a reduced isotopic fractionation (ε³⁴S = <15‰) linked to higher rates of sulphate reduction and AOM-SR. Importantly, hydrothermal sulphides (pyrite, sphalerite and galena) all post-date this diagenetic barite-pyrite assemblage, and textural and mineralogical evidence indicates barite replacement to be an important process during hydrothermal mineralisation. Neither the textures nor the documented isotopic relationships can be produced by processes operating in a euxinic water column, which represents a major departure from the conventional model for SHMS formation at Macmillan Pass. We suggest that positive δ³⁴S values in sulphides, a common feature of SHMS systems both in the Selwyn Basin and throughout the geologic record, could be linked to AOM-SR. At Macmillan Pass, positive δ³⁴Spyrite values developed during open system diagenesis, which was critical for rapid sulphur cycling and the development of an effective metal trap.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aharon P. and Fu B. (2000) Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochim. Cosmochim. Acta 64, 233- 246.
    • Aller R. C. (2014) Sedimentary diagenesis, depositional environments, and benthic fluxes. In Treatise on Geochemistry (eds. H. D. Holland and K. K. Turekian). Elsevier Ltd., pp. 293-334.
    • Aller R. C., Madrid V., Chistoserdov A., Aller J. Y. and Heilbrun C. (2010) Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: Implications for oceanic isotope cycles and the sedimentary record. Geochim. Cosmochim. Acta 74, 4671-4692.
    • Anderson I. K., Ashton J. H., Boyce A. J., Fallick A. E. and Russel M. J. (1998) Ore depositional processes in the Navan Zn-Pb deposit, Ireland. Econ. Geol..
    • Ansdell K. M., Nesbitt B. E. and Longstaffe F. J. (1989) A fluid inclusion and stable isotope study of the Tom Ba-Pb-Zn deposit, Yukon Territory, Canada. Econ. Geol. 84, 841-856.
    • Antler G., Turchyn A. V., Rennie V., Herut B. and Sivan O. (2013) Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment. Geochim. Cosmochim. Acta 118, 98-117.
    • Arndt S., Hetzel A. and Brumsack H.-J. (2009) Evolution of organic matter degradation in Cretaceous black shales inferred from authigenic barite: A reaction-transport model. Geochim. Cosmochim. Acta 73, 2000-2022.
    • Arning E. T., Gaucher E. C., van Berk W. and Schulz H.-M. (2015) Hydrogeochemical models locating sulfate-methane transition zone in marine sediments overlying black shales: a new tool to locate biogenic methane? Mar. Pet. Geol. 59, 563-574.
    • Bailes R. J., Smee B. W., Blackader D. W. and Gardner H. D. (1986) Geology of the Jason lead-zinc-silver deposits, Macmillan Pass, Eastern Yukon. In Mineral Deposits of Northern Cordillera (ed. J. A. Morin). The Canadian Institute of Mining and Metallurgy, pp. 87-99.
    • Barnes R. O. and Goldberg E. D. (1976) Methane production and consumption in anoxic marine sediments. Geology 4, 297-300.
    • Barrie C. D., Boyce A. J., Boyle A. P., Williams P. J., Blake K., Wilkinson J. J., Lowther M., Mcdermott P. and Prior D. J. (2009) On the growth of colloform textures: a case study of sphalerite from the Galmoy ore body. Ireland. J. Geol. Soc. London 166, 563-582.
    • Berner R. A. (1980) Early Diagenesis: A Theoretical Approach. Princeton University Press.
    • Bishop J. K. B. (1988) The barite-opal-organic carbon association in oceanic particulate matter. Nature 332, 341-343.
    • Borowski W. S., Rodriguez N. M., Paull C. K. and Ussler W. (2013) Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? Mar. Pet. Geol. 43, 381-395.
    • Bottrell S. H. and Newton R. J. (2006) Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth Sci. Rev. 75, 59-83.
    • Bowers T. S., Jackson K. J. and Helgeson H. C. (1984) Equilibrium activity diagrams. Springer-Verlag, Berlin.
    • Bradley A. S., Leavitt W. D. and Johnston D. T. (2011) Revisiting the dissimilatory sulfate reduction pathway. Geobiology 9, 446- 457.
    • Brunner B. and Bernasconi S. M. (2005) A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochim. Cosmochim. Acta 69, 4759-4771.
    • Canfield D. E. (2001a) Biogeochemistry of Sulfur Isotopes. Rev. Mineral. Geochemistry 43, 607-636.
    • Canfield D. E. (2001b) Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta 65, 1117-1124.
    • Canfield D. E. (2004) The evolution of the earth surface sulfur reservoir. Am. J. Sci. 304, 839-861.
    • Canfield D. E. and Thamdrup B. (1994) The production of 34Sdepleted sulfide during bacterial disproportionation of elemental sulfur. Science (80-.) 266, 1973-1975.
    • Canfield D. E., Raiswell R., Westrich J. T., Reaves C. M. and Berner R. A. (1986) The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149-155.
    • Carne R. C. and Cathro R. J. (1982) Sedimentary exhalative (sedex) zinc-lead-silver deposits, northern Canadian Cordillera. Can. Min. Metall. Bull. 75, 66-78.
    • Cecile M. P., Shakur M. A. and Krouse H. R. (1983) The isotopic composition of western Canadian barites and the possible derivation of oceanic sulphate d34S and d18O age curves. Can. J. Earth Sci. 20, 1528-1535.
    • Chen D., Wang J., Racki G., Li H., Wang C., Ma X. and Whalen M. T. (2013) Large sulphur isotopic perturbations and oceanic changes during the Frasnian-Famennian transition of the Late Devonian. J. Geol. Soc. London 170, 465-476.
    • Cruse A. M. and Seewald J. S. (2006) Geochemistry of lowmolecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge. Geochim. Cosmochim. Acta 70, 2073-2092.
    • Dawson K. M. and Orchard M. J. (1982) Regional metallogeny of the northern Cordillera: biostratigraphy, correlation and metallogenic significance of bedded barite occurrences in eastern Yukon and western District of Mackenzie. Geol. Surv. Canada, 31-38, Pap. 82-1C.
    • Dehairs F., Chesselet R. and Jedwab J. (1980) Discrete suspended particles of barite and the barium cycle in the open ocean. Earth Planet. Sci. Lett. 49, 528-550.
    • Deusner C., Holler T., Arnold G. L., Bernasconi S. M., Formolo M. J. and Brunner B. (2014) Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration. Earth Planet. Sci. Lett. 399, 61-73.
    • Dickens G. R. D. (2001) Sulfate profiles and barium fronts in sediment on the Blake Ridge : Present and past methane fluxes through a large gas hydrate reservoir. Geochim. Cosmochim. Acta 65, 529-543.
    • Dymond J. and Collier R. (1996) Particulate barium fluxes and their relationships to biological productivity. Deep Sea Res. Part II 43, 1283-1308.
    • Eldridge C. S., Compston W., Williams I. S., Both R. A., Walshe J. L. and Ohmoto H. (1988) Sulfur isotope variability in sedimenthosted massive sulfide deposits as determined using the ion microprobe SHRIMP: 1. An example from the Rammelsberg orebody. Econ. Geol. 83, 443-449.
    • Eldridge C. S., Williams N. and Walshe J. L. (1993) Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion microprobe SHRIMP: II. A study of the H.Y.C. deposit at McArthur River, Northern Territory, Australia. Econ. Geol. 88, 1-26.
    • Emerson, S. and Hedges, J. (eds.) (2003) Sediment diagenesis and benthic fluxHolland, H. D. and Turekian, K. K. (eds.) (2003) Treatise on Geochemistry.
    • Farquhar J., Nanping W., Canfield D. E. and Oduro H. (2010) Connections between Sulfur Cycle Evolution, Sulfur Isotopes, Sediments, and Base Metal Sulfide Deposits. Econ. Geol. 105, 509-533.
    • Fike D. A., Bradley A. S. and Rose C. V. (2015) Rethinking the ancient sulfur cycle. Annu. Rev. Earth Planet. Sci. 43, 593-622.
    • Fritz P., Basharmal G. M., Drimmie R. J., Ibsen J. and Qureshi R. M. (1989) Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem. Geol. Isot. Geosci. Sect. 79, 99-105.
    • Froelich P. N., Klinkhammer G. P., Bender M. L., Luedtke N. A., Heath G. R., Cullen D., Dauphin P., Hammond D. and Hartman B. (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suhoxic diagenesis. Geochim. Cosmochim. Acta..
    • Gadd M. G., Layton-Matthews D., Peter J. M. and Paradis S. J. (2015) The world-class Howard's Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part I: trace element compositions of pyrite record input of hydrothermal, diagenetic, and metamorphic fluids to mineralization. Miner. Depos., 1-24.
    • Gardner H. D. and Hutcheon I. (1985) Geochemistry, Mineralogy, and Geology of the Jason Pb-Zn Deposits, Macmillan Pass, Yukon. Canada. Econ. Geol. 80, 1257-1276.
    • Goldhaber M. B. and Kaplan I. R. (1975) Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Sci. 119, 42-55.
    • Gomes M. L. and Hurtgen M. T. (2015) Sulfur isotope fractionation in modern euxinic systems: Implications for paleoenvironmental reconstructions of paired sulfate-sulfide isotope records. Geochim. Cosmochim. Acta 157, 39-55.
    • Gonzalez-Munoz M. T., Martinez-Ruiz F., Morcillo F., MartinRamos J. D., Paytan A., Gonzalez-Mun˜ oz M. T., MartinezRuiz F., Morcillo F., Martin-Ramos J. D. and Paytan A. (2012) Precipitation of barite by marine bacteria: A possible mechanism for marine barite formation. Geology 40, 675-678.
    • Goodfellow W. D. (1987) Anoxic stratified oceans as a source of sulphur in sediment-hosted stratiform Zn-Pb Deposits (Selwyn Basin, Yukon, Canada). Chem. Geol. (Isotope Geosci. Sect.) 65, 359-382.
    • Goodfellow W. D. (2007) Base metal metallogeny of the Selwyn Basin, Canada. In Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods (ed. W. D. Goodfellow). Geological Association of Canada, pp. 553-579.
    • Goodfellow W. D. and Jonasson I. R. (1984) Ocean stagnation and ventilation defined by 34-S secular trends in pyrite and barite, Selwyn Basin, Yukon. Geology 12, 583-586.
    • Goodfellow W. D. and Jonasson I. R. (1986) Environment of formation of the Howards Pass (XY) Zn-Pb deposit, Selwyn Basin, Yukon. In Mineral Deposits of Northern Cordillera (ed. J. A. Morin). The Canadian Institute of Mining and Metallurgy, pp. 19-50.
    • Goodfellow W. D. and Lydon J. W. (2007) Sedimentary exhalative (SEDEX) deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods (ed. W. D. Goodfellow). Geological Association of Canada, pp. 163-183.
    • Gordey S. P. and Anderson R. G. (1993) Evolution of the northern cordilleran miogeocline, Nahanni map area (105I), Yukon and Northwest Territories. In Memoir 428 (eds. S. P. Gordey and R. G. Anderson). Geological Survey of Canada.
    • Habicht K. S. and Canfield D. E. (1997) Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochim. Cosmochim. Acta 61, 5351-5361.
    • Habicht K. S., Gade M., Thamdrup B., Berg P. and Canfield D. E. (2002) Calibration of sulfate levels in the Archean ocean. Science (80-.) 298, 2372-2374.
    • Harrison A. G. G. and Thode H. G. (1958) Mechanism of the bacterial reduction of sulphate from isotope fractionation studies. Trans. Faraday Soc. 54, 84-92.
    • Henkel S., Mogollo´ n J. M., No¨ then K., Franke C., Bogus K., Robin E., Bahr A., Blumenberg M., Pape T., Seifert R., Ma¨rz C., de Lange G. J. and Kasten S. (2012) Diagenetic barium cycling in Black Sea sediments - A case study for anoxic marine environments. Geochim. Cosmochim. Acta 88, 88-105.
    • Hoehler T. M., Alperin M. J., Albert D. B. and Martens C. S. (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Global Biogeochem. Cycles 8, 451.
    • Horita J., Zimmerman H. and Holland H. D. (2002) Chemical evolution of seawater during the Phanerozoic : Implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66, 3733-3756.
    • Ireland T., Large R. R., McGoldrick P. and Blake M. (2004) Spatial distribution patterns of sulfur isotopes, nodular carbonate, and ore textures in the McArthur River (HYC) Zn-PbAg deposit, Northern Territory, Australia. Econ. Geol. 99, 1687-1709.
    • Irwin S. and Orchard M. (1989) Conodont biostratigraphy and constraints on Upper Devonian mineral deposits in the Earn Group, northern British Columbia and Yukon. Current Research, Part E. Geological Survey of Canada, pp. 13-19, Paper 89-1E.
    • Irwin S. E. B. and Orchard M. J. (1991) Upper Devonian-Lower Carboniferous conodont biostratigraphy of the Earn Group and overlying units, northern Cordillera. In Ordovician to Triassic Conodont Paleontology of the Canadian Cordillera (eds. M. J. Orchard and A. D. McCracken). Geological Survey of Canada, Bulletin 417. pp. 185-213.
    • Iversen N. and Jørgensen B. B. (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 1985, 944-955.
    • John E. H., Wignall P. B., Newton R. J. and Bottrell S. H. (2010) D34SCAS and d18OCAS records during the Frasnian-Famennian (Late Devonian) transition and their bearing on mass extinction models. Chem. Geol. 275, 221-234.
    • Johnson C. A., Kelley K. D. and Leach D. L. (2004) Sulfur and Oxygen Isotopes in Barite Deposits of the Western Brooks Range, Alaska, and Implications for the Origin of the Red Dog Massive Sulfide Deposits. Econ. Geol. 99, 1435-1448.
    • Johnson C. A., Emsbo P., Poole F. G. and Rye R. O. (2009) Sulfurand oxygen-isotopes in sediment-hosted stratiform barite deposits. Geochim. Cosmochim. Acta 73, 133-147.
    • Jones D. S. and Fike D. A. (2013) Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite d34S. Earth Planet. Sci. Lett. 363, 144- 155.
    • Jørgensen B. B. J. and Kasten S. (2006) Sulfur Cycling and Methane Oxidation. In Marine Geochemistry (eds. H. D. Schulz and M. Zabel). Springer, Berlin Heidelberg, pp. 271-309.
    • Jørgensen B. B., Bo¨ ttcher M. E., L u¨schen H., Neretin L. N. and Volkov I. I. (2004) Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim. Cosmochim. Acta 68, 2095-2118.
    • Joye S. B., Boetius A., Orcutt B. N., Montoya J. P., Schulz H. N., Erickson M. J. and Lugo S. K. (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem. Geol. 205, 219-238.
    • Kaplan I. R. and Rittenberg S. C. (1964) Microbiological Fractionation of Sulphur Isotopes. J. Gen. Microbiol. 34, 195-212.
    • Kasten S., Freudenthal T., Gingele F. X. and Schulz H. D. (1998) Simultaneous formation of iron-rich layers at different redox boundaries in sediments of the Amazon deep-sea fan. Geochim. Cosmochim. Acta 62, 2253-2264.
    • Kelley K. D., Dumoulin J. A. and Jennings S. (2004a) The Anarraaq Zn-Pb-Ag and barite deposit, Northern Alaska: evidence for replacement of carbonate by barite and sulfides. Econ. Geol. 99, 1577-1591.
    • Kelley K. D., Leach D. L., Johnson C. A., Clark J. L., Fayek M., Slack J. F., Anderson V. M., Ayuso R. A. and Ridley W. I. (2004b) Textural, Compositional, and Sulfur Isotope Variations of Sulfide Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Implications for Ore Formation. Econ. Geol. 99, 1509-1532.
    • Kiyosu Y. and Krouse R. H. (1990) The role of organic and acid the in the sulfur abiogenic isotope reduction effect. Geochem. J. 24, 21-27.
    • Knittel K. and Boetius A. (2009) Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annu. Rev. Microbiol. 63, 311-334.
    • Kozdon R., Kita N. T., Huberty J. M., Fournelle J. H., Johnson C. A. and Valley J. W. (2010) In situ sulfur isotope analysis of sulfide minerals by SIMS: precision and accuracy, with application to thermometry of 3.5 Ga Pilbara cherts. Chem. Geol. 275, 243-253.
    • Large D. and Walcher E. (1999) The Rammelsberg massive sulphide Cu-Zn-Pb-Ba-Deposit, Germany: An example of sediment-hosted, massive sulphide mineralisation. Miner. Depos. 34, 522-538.
    • Large R. R., Bull S. W., McGoldrick P. J., Walters S., Derrick G. M. and Carr G. R. (2005) Strata-Bound and stratiform Zn-PbAg deposits in proterozoic sedimentary basins, Northern Australia. Econ. Geol. 100, 931-963.
    • Leach D. L., Sangster D. F., Kelley K. D., Large R. R., Garven G., Allen C. R., Gutzmer J. and Walters J. (2005) Sediment-hosted lead-zinc deposits a global perspective. In Economic Geology 100th Anniversary Volume (eds. J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb and J. P. Richards). Economic Geology Publishing Co., pp. 561-607.
    • Leach D. L., Bradley D. C., Huston D., Pisarevsky S. A., Taylor R. D. and Gardoll J. (2010) Sediment-Hosted Lead-Zinc Deposits in Earth History. Econ. Geol. 105, 593-625.
    • Lyons T. W. (1997) Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea. Geochim. Cosmochim. Acta 61, 3367-3382.
    • Lyons T. W., Gellatly A. M., Mcgoldrick P. J. and Kah L. C. (2006) Proterozoic sedimentary exhalative (SEDEX) deposits and links to evolving ocean chemistry. Geol. Soc. Am. Mem. 198, 169-184.
    • Machel H. G. (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings - old and new insights. Sediment. Geol. 140, 143-175.
    • Machel H. G., Krouse H. R. and Sassen R. (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl. Geochemistry 10, 373-389.
    • Magnall J. M., Gleeson S. A. and Paradis S. (2015) The importance of siliceous radiolarian-bearing mudstones in the formation of sediment-hosted Zn-Pb±Ba mineralization in the Selwyn Basin, Yukon. Canada. Econ. Geol. 110, 2139-2146.
    • McClay K. R. (1991) Deformation of stratiform Zn-Pb (-barite) deposits in the northern Canadian Cordillera. Ore Geol. Rev. 6, 435-462.
    • McClay K. R. and Bidwell G. E. (1986) Geology of the Tom deposit, Macmillan Pass, Yukon. In Mineral Deposits of Northern Cordillera (ed. J. A. Morin). The Canadian Institute of Mining and Metallurgy, pp. 100-114.
    • Mizutani Y. and Rafter T. A. (1973) Isotopic behavior of sulphate oxygen in the bacterial reduction of sulphate. Geochem. J. 6, 183-191.
    • Morganti J. M. (1979) The geology and ore deposits of the Howards Pass area, Yukon and Northwest Territories: the origin of basinal sedimentary stratiform sulphide deposits. University of British Columbia.
    • Nelson J. L., Colpron M., Piercey S. J., Dusel-Bacon C., Murphy D. C. and Roots C. F. (2006) Paleozoic tectonic and metallogenetic evolution of pericratonic terranes in Yukon, northern British Columbia and eastern Alaska. In Paleozoic Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific Margin of North America, Canadian and Alaskan Cordillera (eds. M. Colpron and J. L. Nelson). pp. 323-360.
    • Neretin L. N., Bo¨ ttcher M. E., Jørgensen B. B., Volkov I. I., Lu¨ schen H. and Hilgenfeldt K. (2004) Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea. Geochim. Cosmochim. Acta 68, 2081-2093.
    • Newton R. J., Reeves E. P., Kafousia N., Wignall P. B., Bottrell S. H. and Sha J.-G. (2011) Low marine sulfate concentrations and the isolation of the European epicontinental sea during the Early Jurassic. Geology 39, 7-10.
    • Niew o¨hner C., Hensen C., Kasten S., Zabel M. and Schulz H. D. (1998) Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim. Cosmochim. Acta.
    • Ohmoto H. and Goldhaber M. B. (1997) Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits (ed. H. L. Barnes). John Wiley & Sons, pp. 517-612.
    • Passier H. F., Middelburg J. J., De Lange G. J. and Bo¨ ttcher M. E. (1997) Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel. Geology 25, 519-522.
    • Paytan A. and Griffith E. M. (2007) Marine barite: Recorder of variations in ocean export productivity. Deep Sea Res. Part II 54, 687-705.
    • Paytan A., Mearon S., Cobb K. and Kastner M. (2002) Origin of marine barite deposits: Sr and S isotope characterization. Geology 30, 747.
    • Pigage L. C. (1991) Field guide Anvil Pb-Zn-Ag District, Yukon Territory, Canada. In: Geological Survey of Canada Open File 2169 (eds. J. G. Abbott and R. J. W. Turner). pp. 177-244.
    • Raiswell R. (1982) Pyrite texture, isotopic composition and the availability of iron. Am. J. Sci. 282, 1244-1263.
    • Reeburgh W. S. (1976) Methane consumption in cariaco trench waters and sediments. Earth Planet. Sci. Lett. 28, 337-344.
    • Rees C. E. (1973) A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochim. Cosmochim. Acta 37, 1141-1162.
    • Reynolds M. A., Gingras M. K., Gleeson S. A. and Stemler J. U. (2015) More than a trace of oxygen: Ichnological constraints on the formation of the giant Zn-Pb-Ag ± Ba deposits, Red Dog district, Alaska. Geology 43, 867-870.
    • Schmitz B. (1987) Barium, equatorial high productivity, and the northward wandering of the Indian continent. Paleoceanography 2, 63-77.
    • Stamatakis M. G. and Hein J. R. (1993) Origin of barite in Tertiary marine sedimentary rocks from Lefkas Island. Greece. Econ. Geol. 88, 91-103.
    • Torres M. E., Brumsack H. J., Bohrmann G. and Emeis K. C. (1996) Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chem. Geol. 127, 125-139.
    • Torres M. E., Bohrmann G., Dube´ T. E., Poole F. G., Poole Forrest G. and Poole F. G. (2003) Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins. Geology 31, 897-900.
    • Turner R. J. (1991) Jason stratiform Zn-Pb-barite deposit, Selwyn Basin, Canada (NTS 105-0-1): geological setting, hydrothermal facies and genesis (eds. J. G. Abbott and R. J. Turner). Geological Survey of Canada Open File 2169, pp. 137-175.
    • Turner R. J. W. (1992) Formation of Phanerozoic stratiform sediment, hosted zinc- lead deposits : Evidence for the critical role of ocean anoxia. Chem. Geol. 99, 165-188.
    • Wankel S. D., Adams M. M., Johnston D. T., Hansel C. M., Joye S. B. and Girguis P. R. (2012) Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environ. Microbiol. 14, 2726-2740.
    • Wankel S. D., Bradley A. S., Eldridge D. L. and Johnston D. T. (2014) Determination and application of the equilibrium oxygen isotope effect between water and sulfite. Geochim. Cosmochim. Acta 125, 694-711.
    • Widerlund A., Nowell G. M., Davison W. and Pearson D. G. (2012) High-resolution measurements of sulphur isotope variations in sediment pore-waters by laser ablation multicollector inductively coupled plasma mass spectrometry. Chem. Geol. 291, 278-285.
    • Wilkin R. T., Barnes H. L. and Brantley S. L. (1996) The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. Cosmochim. Acta 60, 3897-3912.
    • Wilkinson J. J. (2014) Sediment-Hosted Zinc-Lead Mineralization: Processes and Perspectives. Second Edition Elsevier Ltd., In Treatise on Geochemistry, pp. 219-249.
    • Wortmann U. G., Chernyavsky B., Bernasconi S. M., Brunner B., Bo¨ ttcher M. E. and Swart P. K. (2007) Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: Dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochim. Cosmochim. Acta 71, 4221-4232.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    64
    64%
  • No similar publications.

Share - Bookmark

Cite this article