LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pasquazi, Alessia; Park, Yongwoo; Azaña, José; Légaré, François; Morandotti, Roberto; Little, Brent E; Chu, Sai T; Moss, David J (2010)
Publisher: Optical Society of America
Languages: English
Types: Preprint
Subjects: TA1501, Physics - Optics

Classified by OpenAIRE into

arxiv: Physics::Optics
We demonstrate sub-picosecond wavelength conversion in the C-band via four wave mixing in a 45cm long high index doped silica spiral waveguide. We achieve an on/off conversion efficiency (signal to idler) of + 16.5dB as well as a parametric gain of + 15dB for a peak pump power of 38W over a wavelength range of 100nm. Furthermore, we demonstrated a minimum gain of + 5dB over a wavelength range as large as 200nm.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Nature Photonics Workshop on the Future of Optical Communications; Tokyo, Oct. 2007. www.nature.com/nphoton/supplements/techconference2007
    • 2. B. J. Eggleton, S. Radic, and D. J. Moss, “Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools”, Chapter 20 (p759-828) in Optical Fiber Telecommunications V: Components and Sub-systems, Edited by I. P. Kaminow, T. Li, and A. E. Willner, Academic Press, Oxford, UK, February (2008).
    • 3. E. Ciaramella, and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 12(7), 849-851 (2000).
    • 4. V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371-10376 (2006).
    • 5. S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing,” IEEE Photon. Technol. Lett. 14(10), 1406-1408 (2002).
    • 6. J. H. Lee, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “All-fiber 80-Gbit/s wavelength converter using 1-m-long Bismuth Oxide-based nonlinear optical fiber with a nonlinearity gamma of 1100 W1km-1.,” Opt. Express 13(8), 3144-3149 (2005).
    • 7. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, and S.-I. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629-4637 (2005).
    • 8. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960-963 (2006).
    • 9. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35-38 (2008).
    • 10. B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8-10 (2009).
    • 11. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12(16), 3713-3718 (2004).
    • 12. H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170-174 (2008).
    • 13. V. G. Ta'eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14(23), 11242-11247 (2006).
    • 14. V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As(2)S(3) planar waveguides,” Opt. Express 15(23), 15047-15052 (2007).
    • 15. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374-20381 (2008).
    • 16. M. Rochette, L. B. Fu, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: Beyond Noise Compression to BER Reduction,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736-744 (2006).
    • 17. V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900-2902 (2005).
    • 18. D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865-1870 (2009).
    • 19. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737-740 (2008).
    • 20. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41-45 (2010).
    • 21. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17(16), 14098-14103 (2009).
    • 22. A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “Alloptical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858-3863 (2010).
    • 23. B. E. Little, “A VLSI photonics platform,” Opt. Fiber Commun. 2, 444-445 (2003).
    • 24. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, Ca., (2001)).
    • 25. M. Peccianti, M. Ferrera, D. Duchesne, L. Razzari, R. Morandotti, B. E. Little, S. Chu, and D. J. Moss, “Subpicosecond Optical Pulse Compression on a Chip,” submitted to Opt. Express..
    • 26. J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm Continuous-Wave Two-Pump Parametric Amplification,” IEEE Photon. Technol. Lett. 21(10), 612-614 (2009).
    • 27. C. J. McKinstrie, and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express 14(21), 9600-9610 (2006).
    • 28. A. Cerqueira Sodre, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight,, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16(4), 2816-2828 (2008).
    • 29. J. S. Park, S. Zlatanovic, M. L. Cooper, J. M. Chavez-Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Two-Pump Four-Wave Mixing in Silicon Waveguides”, OSA Conference Frontiers in Optics (FiO), Paper FML2, San Jose CA, October (2009)
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article