LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Duke, DJ; Carr, H (2013)
Publisher: Institute of Electrical and Electronics Engineers
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
Contour Trees and Reeb Graphs are firmly embedded in scientific visualisation for analysing univariate (scalar) fields. We generalize this analysis to multivariate fields with a data structure called the Joint Contour Net that quantizes the variation of multiple variables simultaneously. We report the first algorithm for constructing the Joint Contour Net, and demonstrate some of the properties that make it practically useful for visualisation, including accelerating computation by exploiting a relationship with rasterisation in the range of the function.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. Allili, M. Ethier, and T. Kaczynski. Critical Region Analysis of Scalar Fields in Arbitrary Dimensions. In Proceedings of Visualization and Data Analysis 2010, pages 753008-12, 2010.
    • [2] S. Bachthaler and D. Weiskopf. Continuous Scatterplots. IEEE Transactions on Visualization and Computer Graphics, 14(6):1428- 1435, 2008.
    • [3] R. L. Boyell and H. Ruston. Hybrid Techniques for Real-time Radar Simulation. In Proceedings, 1963 Fall Joint Computer Conference, pages 445-458. IEEE, 1963.
    • [4] D. Canino, L. de Floriani, and K. Weiss. IA*: An AdjacencyBased Representation for Non-Manifold Simplices in Arbitrary Dimensions. Computers and Graphics, 35(3):747-753, 2011.
    • [5] G. Carlsson, G. Singh, and A. Zomorodian. Computing Multidimensional Persistence. Journal of Comp. Geometry, 1(1):72-100, 2010.
    • [6] H. Carr, B. Duffy, and B. Denby. On Histograms and Isosurface Statistics. IEEE Transactions on Visualization and Computer Graphics, 12(5):1259-1266, September/October 2006.
    • [7] H. Carr and J. Snoeyink. Representing Interpolant Topology for Contour Tree Computation. In H.-C. Hege, K. Polthier, and G. Scheuermann, editors, Topology-Based Methods in Visualization II, Mathematics and Visualization, pages 59-74. Springer, 2009.
    • [8] H. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees in All Dimensions. Computational Geometry: Theory and Applications, 24(2):75-94, 2003.
    • [9] H. Carr, J. Snoeyink, and M. van de Panne. Flexible Isosurfaces: Simplifying and Displaying Scalar Topology Using the Contour Tree. Computational Geometry: Theory and Applications, 43(1):42-58, 2010.
    • [10] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and Optimal Output-Sensitive Construction of Contour Trees Using Monotone Paths. Computational Geometry: Theory and Applications, 30:165-195, 2005.
    • [11] C. D. Correa and P. Lindstrom. Towards Robust Topology of Sparsely Sampled Data. IEEE Transactions on Visualization and Computer Graphics, 17(12):1852-1861, 2011.
    • [12] H. Doraiswamy and V. Natarajan. Computing Reeb Graphs as a Union of Contour Trees. IEEE Transactions on Visualization and Computer Graphics, page DOI: 10.1109/TVCG.2012.115, 2012.
    • [13] B. Duffy and H. Carr. Interval based data structure optimisation. In Proceedings, Theory and Practice of Computer Graphics 2010, pages 151-158, 2010.
    • [14] B. Duffy, H. Carr, and T. M o¨ller. Integrating Histograms and Isosurface Statistics. IEEE Transactions on Visualization and Computer Graphics, 19(2):263-77, 2013. DOI: 10.1109/TVCG.2012.118.
    • [15] D. Duke, H. Carr, A. Knoll, N. Schunck, H. A. Nam, and A. Staszczak. Visualizing nuclear scission through a multifield extension of topological analysis. IEEE Transactions on Visualization and Computer Graphics, 18(12):2033-40, 2012.
    • [16] H. Edelsbrunner. Algorithms in Combinatorial Geometry. SpringerVerlag, 1987.
    • [17] H. Edelsbrunner and J. Harer. Jacobi Sets of Multiple Morse Functions. In Foundations in Computational Mathematics, pages 37- 57, Cambridge, U.K., 2002. Cambridge University Press.
    • [18] H. Edelsbrunner, J. Harer, A. Mascarenhas, V. Pascucci, and J. Snoeyink. Time-Varying Reeb Graphs for Continuous SpaceTime Data. Computational Geometry, 41(3):149-166, 2008.
    • [19] H. Edelsbrunner, J. Harer, and A. K. Patel. Reeb Spaces of Piecewise Linear Mappings. In Proceedings of ACM Symposium on Computational Geometry, pages 242-250., 2008.
    • [20] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse Complexes for Piecewise Linear 2-Manifolds. In Proceedings, 17th ACM Symposium on Computational Geometry, pages 70- 79. ACM, 2001.
    • [21] H. Edelsbrunner and E. P. Mu¨ cke. Simulation of Simplicity: A Technique to Cope with Degenerate Cases in Geometric Algorithms. ACM Transactions on Graphics, 9(1):66-104, 1990.
    • [22] R. Forman. Discrete Morse Theory for Cell Complexes. Advances in Mathematics, 134:90-145, 1998.
    • [23] W. Harvey and Y. Wang. Generating and Exploring a Collection of Topological Landscapes for Visualization of Scalar-Valued Functions. Computer Graphics Forum, 29(3), 2010.
    • [24] W. Harvey, Y. Wang, and R. Wenger. A Randomized O(m log m) Algorithm for Computing Reeb Graphs of Arbitrary Simplicial Complexes. In ACM Symposium on Computational Geometry, pages 267-276, 2010.
    • [25] C. Heine, D. Schneider, H. Carr, and G. Scheuermann. Drawing contour trees in the plane. IEEE Transactions on Visualization and Computer Graphics, 17(11):1599-1611, 2011.
    • [26] W. Hibbard and D. Santek. Visualizing Large Data Sets in the Earth Sciences. Computer, 22(8):53-57, 1989.
    • [27] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes. ACM Transactions on Graphics, pages 203-212, 2001.
    • [28] S. Maadasamy, H. Doraiswamy, and V. Natarajan. A hybrid parallel algorithm for computing and tracking level set topology. In High Performance Computing (HiPC), 2012 19th International Conference on, pages 1-10. IEEE, 2012.
    • [29] D. Morozov and G. Weber. Distributed merge trees. In Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming, PPoPP '13, pages 93-102, New York, NY, USA, 2013. ACM.
    • [30] S. Nagaraj and V. Natarajan. Simplification of Jacobi Sets. In V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny, editors, Topological Data Analysis and Visualization: Theory, Algorithms and Applications, Mathematics and Visualization, pages 91-102. Springer, 2011.
    • [31] S. Parsa. A Deterministic O(m log m) Time Algorithm for the Reeb Graph. In ACM Symposium on Computational Geometry, pages 269-276, 2012.
    • [32] V. Pascucci and K. Cole-McLaughlin. Parallel Computation of the Topology of Level Sets. Algorithmica, 38(2):249-268, 2003.
    • [33] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust On-line Computation of Reeb Graphs: Simplicity and Speed. ACM Transactions on Graphics, 26(3):58.1-58.9, 2007.
    • [34] G. Reeb. Sur les Points Singuliers d'une Forme de Pfaff Comple`tement Inte´grable ou d'une Fonction Nume´rique. Comptes Rendus de l'Acade`mie des Sciences de Paris, 222:847-849, 1946.
    • [35] O. Saeki. Topology of Singular Fibers of Differentiable Maps. Number 1854 in Lecture Notes in Mathematics. Springer, 2004.
    • [36] C. E. Scheidegger, J. M. Schreiner, B. Duffy, H. Carr, and C. T. Silva. Revisiting Histograms and Isosurface Statistics. IEEE Transactions on Visualization and Computer Graphics, 14(6):1659-1666, 2008.
    • [37] D. Schneider, A. Wiebel, H. Carr, M. Hlawitschka, and G. Scheuermann. Interactive Comparison of Scalar Fields Based on Largest Contours with Applications to Flow Visualization. IEEE Transactions on Visualization and Computer Graphics, 14(6):1475-1482, 2008.
    • [38] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Kitware, Inc., fourth edition, 2006.
    • [39] R. E. Tarjan. Efficiency of a Good but not Linear Set Union Algorithm. Journal of the ACM, 22:215-225, 1975.
    • [40] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop Surgery for Volumetric Meshes: Reeb Graphs Reduced to Contour Trees. IEEE Transactions on Visualization and Computer Graphics, 15(6):1177- 1184, 2010.
    • [41] M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R. Schikore. Contour Trees and Small Seed Sets for Isosurface Traversal. In Proceedings, 13th ACM Symposium on Computational Geometry, pages 212-220, 1997.
    • [42] M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R. Schikore. Topological Data Structures for Surfaces: An Introduction for Geographical Information Science, chapter 5: Efficient contour tree and minimum seed set construction, pages 71-86. John Wiley & Sons, May 2004.
    • [43] G. Weber, P.-T. Bremer, and V. Pascucci. Topological Landscapes: A Terrain Metaphor for Scientific Data. IEEE Transactions on Visualization and Computer Graphics, 13(6):1416-1423, November/December 2007.
    • [44] G. Weber, S. Dillard, H. Carr, V. Pascucci, and B. Hamann. Topology-Controlled Volume Rendering. IEEE Transactions on Visualization and Computer Graphics, 13(2):330-341, March/April 2007.
    • [45] G. Weber, G. Scheuermann, and H. Hagen. Detecting Critical Regions in Scalar Fields. In Proceedings of Eurographics-IEEE Symposium on Visualization 2003, pages 85-94,288, 2003.
    • [46] X. Zhang, C. L. Bajaj, and N. Baker. Fast Matching of Volumetric Functions Using Multi-resolution Dual Contour Trees. Technical report, Texas Institute for Computational and Applied Mathematics, Austin, Texas, 2004.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article