Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dalwadi, Mohit P.; Griffiths, Ian M.; Bruna, Maria (2015)
Publisher: Royal Society
Languages: English
Types: Article
Subjects: Physics - Fluid Dynamics
Filters whose porosity decreases with depth are often more efficient at removing solute from a fluid than filters with a uniform porosity. We investigate this phenomenon via an extension of homogenization theory that accounts for a macroscale variation in microstructure. In the first stage of the paper, we homogenize the problems of flow through a filter with a near-periodic microstructure and of solute transport owing to advection, diffusion and filter adsorption. In the second stage, we use the computationally efficient homogenized equations to investigate and quantify why porosity gradients can improve filter efficiency. We find that a porosity gradient has a much larger effect on the uniformity of adsorption than it does on the total adsorption. This allows us to understand how a decreasing porosity can lead to a greater filter efficiency, by lowering the risk of localized blocking while maintaining the rate of total contaminant removal.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. W. Zularisam, A. F. Ismail, and R. Salim. Behaviours of natural organic matter in membrane filtration for surface water treatment - a review. Desalination, 194(1):211-231, 2006.
    • [6] B. Girard, L. R. Fukumoto, and S. Sefa Koseoglu. Membrane processing of fruit juices and beverages: a review. Crit. Rev. Biotech., 20(2):109-175, 2000.
    • [7] H. K. Lonsdale. The growth of membrane technology. J. Memb. Sci., 10(2):81-181, 1982.
    • [8] L. Fillaudeau and H. Carr`ere. Yeast cells, beer composition and mean pore diameter impacts on fouling and retention during cross-flow filtration of beer with ceramic membranes. J. Memb. Sci., 196(1):39-57, 2002.
    • [9] S. Datta and S. Redner. Gradient clogging in depth filtration. Phys. Rev. E, 58(2):R1203, 1998.
    • [10] A. J. Burggraaf and K. Keizer. Synthesis of inorganic membranes. In Inorganic membranes: Synthesis, characteristics and applications, pages 10-63. Springer, 1991.
    • [11] S. Barg, D. Koch, and G. Grathwohl. Processing and properties of graded ceramic filters. J. American Ceramic Soc., 92(12):2854-2860, 2009.
    • [12] L. E. Anderson. Filter element and method of making the same, January 30 1951. US Patent 2,539,768.
    • [13] D. Dickerson, M. Monnin, G. Rickle, M. Borer, J. Stuart, Y. Velu, W. Haberkamp, and J. Graber. Gradient density depth filtration system, May 31 2005. US Patent App. 11/140,801.
    • [14] I. Vida Simiti, N. Jumate, V. Moldovan, G. Thalmaier, and N. Sechel. Characterization of Gradual Porous Ceramic Structures Obtained by Powder Sedimentation. J. Mat. Sci. Tech., 28 (4):362-366, 2012.
    • [15] M. Rahimi, S. S. Madaeni, M. Abolhasani, and A. A. Alsairafi. CFD and experimental studies of fouling of a microfiltration membrane. Chem. Eng. Processing: Process Intensification, 48(9): 1405-1413, 2009.
    • [16] J. B. Keller. Darcy's law for flow in porous media and the two-space method, volume 54. 1980.
    • [17] K. R. Daly and T. Roose. Homogenization of two fluid flow in porous media. Proc. R. Soc. A, 471(2176), 2015. ISSN 1364-5021. doi: 10.1098/rspa.2014.0564.
    • [18] I. L. Chernyavsky, L. Leach, I. L. Dryden, and O. E. Jensen. Transport in the placenta: homogenizing haemodynamics in a disordered medium. Phil. Trans. Royal Soc. A: Math., Phys. Eng. Sci., 369(1954):4162-4182, 2011.
    • [19] G. Richardson and S. J. Chapman. Derivation of the bidomain equations for a beating heart with a general microstructure. SIAM J. Appl. Math., 71(3):657-675, 2011.
    • [20] R. Penta, D. Ambrosi, and R. J. Shipley. Effective governing equations for poroelastic growing media. Quart. J. Mech. Appl. Math., 67(1):69-91, 2014.
    • [21] R. Penta, D. Ambrosi, and A. Quarteroni. Multiscale homogenization for fluid and drug transport in vascularized malignant tissues. Math. Models Meth. Appl. Sci., 25(01):79-108, 2015.
    • [22] M. Bruna and S. J. Chapman. Diffusion in spatially varying porous media. SIAM J. Appl. Math., 75(4):1648-1674, 2015.
    • [23] W. R. Bowen, J. I. Calvo, and A. Hernandez. Steps of membrane blocking in flux decline during protein microfiltration. J. Memb. Sci., 101(1):153-165, 1995.
    • [24] I. M. Griffiths, A. Kumar, and P. S. Stewart. A combined network model for membrane fouling. J. Colloid Interface Sci., 432:10-18, 2014.
    • [25] Y. S. Polyakov. Depth filtration approach to the theory of standard blocking: Prediction of membrane permeation rate and selectivity. J. Memb. Sci., 322(1):81-90, 2008.
    • [26] S. Whitaker. The Method of Volume Averaging, volume 13 of Theory and Applications of Transport in Porous Media. Springer, 1999.
    • [27] J. H. Cushman, L. S. Bennethum, and B. X. Hu. A primer on upscaling tools for porous media. Adv. Water Resour., 25(8-12):1043-1067, August 2002.
    • [28] L. E. Weiss, C. H. Amon, S. Finger, E. D. Miller, D. Romero, I. Verdinelli, L. M. Walker, and P. G. Campbell. Bayesian computer-aided experimental design of heterogeneous scaffolds for tissue engineering. Comp.-Aid. Des., 37(11):1127-1139, 2005.
    • [29] W. Sun, A. Darling, B. Starly, and J. Nam. Computer-aided tissue engineering: overview, scope and challenges. Biotechn. Appl. Biochem., 39(1):29-47, 2004.
    • [30] D.-W. Chung, P. R. Shearing, N. P. Brandon, S. J. Harris, and R. E. Garc´ıa. Particle size polydispersity in Li-Ion batteries. J. Electrochem. Soc., 161(3):A422-A430, 2014.
    • [31] B. Kieback, A. Neubrand, and H. Riedel. Processing techniques for functionally graded materials. Materials Sci. Eng. A, 362(1):81-106, 2003.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article