LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
van Berkel, SS; Brem, J; Rydzik, AM; Salimraj, R; Cain, R; Verma, A; Owens, RJ; Fishwick, CWG; Spencer, J; Schofield, CJ (2013)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: bacterial infections and mycoses, biochemical phenomena, metabolism, and nutrition, polycyclic compounds, chemical and pharmacologic phenomena
Metallo-β-lactamases (MBLs) are a growing threat to the use of almost all clinically used β-lactam antibiotics. The identification of broad-spectrum MBL inhibitors is hampered by the lack of a suitable screening platform, consisting of appropriate substrates and a set of clinically relevant MBLs. We report procedures for the preparation of a set of clinically relevant metallo-β-lactamases (i.e., NDM-1 (New Delhi MBL), IMP-1 (Imipenemase), SPM-1 (São Paulo MBL), and VIM-2 (Verona integron-encoded MBL)) and the identification of suitable fluorogenic substrates (umbelliferone-derived cephalosporins). The fluorogenic substrates were compared to chromogenic substrates (CENTA, nitrocefin, and imipenem), showing improved sensitivity and kinetic parameters. The efficiency of the fluorogenic substrates was exemplified by inhibitor screening, identifying 4-chloroisoquinolinols as potential pan MBL inhibitors.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher, H. W.; Scheld, W. M.; Bartlett, J. G.; Edwards, J., Jr. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the Infectious Diseases Society of America. Clin.
    • Infect. Dis. 2008, 46, 155−164.
    • (2) World Health Organization. The evolving threat of antimicrobial resistance: Options for action, 2012. http://whqlibdoc.who.int/ publications/2012/9789241503181_eng.pdf (accessed December 2012).
    • (3) Bush, K.; Jacoby, G. A. Updated functional classification of β- lactamases. Antimicrob. Agents Chemother. 2010, 54, 969−976.
    • (4) White, A. R.; Kaye, C.; Poupard, J.; Pypstra, R.; Woodnutt, G.; Wynne, B. J. Augmentin (amoxicillin/clavulanate) in the treatment of community-acquired respiratory tract infection: A review of the continuing development of an innovative antimicrobial agent.
    • Antimicrob. Chemother. 2004, 53 (Suppl. S1), i3−i20.
    • (5) Drawz, S. M.; Bonomo, R. A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 2010, 23, 160−201.
    • (6) Oelschlaeger, P.; Ai, N.; DuPrez, K. T.; Welsh, W. J.; Toney, J. H.
    • Evolving carbapenemases: Can medicinal chemists advance one step ahead of the coming storm? J. Med. Chem. 2010, 53, 3013−3027.
    • (7) Papp-Wallace, K. M.; Endimiani, A.; Taracila, M. A.; Bonomo, R.
    • A Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 5, 4943−4960.
    • (8) Ehmann, D. E.; Jahic,́ H.; Ross, P. L.; Gu, R.-F.; Hu, J.; Kern, G.; Walkup, G. K.; Fisher, S. L. Avibactam is a covalent, reversible, non-β- lactam β-lactamase inhibitor. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 11663−11668.
    • (9) Ellar, D. J.; Lundgren, D. G. Fine structure of sporulation in Bacillus cereus grown in a chemically defined medium. J. Bacteriol.
    • (10) Walsh, T. R. Emerging carbapenemases: A global perspective.
    • Int. J. Antimicrob. Agents 2010, 36 (Suppl. 3), S8−S14.
    • (11) Cornaglia, G.; Giamarellou, H.; Maria Rossolini, G. Metallo-β- lactamases: A last frontier for β-lactams? Lancet Infect. Dis. 2011, 11, 381−393.
    • (12) (a) Chen, P.; Horton, L. B.; Mikulski, R. L.; Deng, L.; Sundriyal, S.; Palzkill, T.; Song, Y. 2-Substituted 4,5-dihydrothiazole-4-carboxylic acids are novel inhibitors of metallo-β-lactamases. Bioorg. Med. Chem.
    • Lett. 2012, 22, 6229−6232. (b) Toney, J. H.; Hammond, G. G.; Fitzgerald, P. M. D.; Sharma, N.; Balkovec, J. M.; Rouen, G. P.; Olson, S. H.; Hammond, M. L.; Greenlee, M. L.; Gao, Y. D. Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-β-lactamase. J. Biol.
    • Chem. 2001, 276, 31913−31918.
    • (13) (a) Toney, J. H.; Fitzgerald, P. M.; Grover-Sharma, N.; Olson, S.
    • Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-β-lactamase. Chem. Biol. 1998, 5, 185−196.
    • R.; Spaargaren, M.; Frer̀e, J.-M.; Bebrone, C.; Sharpless, K. B.; Hodder, P. S.; Fokin, V. V. NH-1,2,3-Triazole-based inhibitors of the VIM-2 metallo-β-lactamase: Synthesis and structure−activity studies. ACS Med. Chem. Lett. 2010, 1, 150−154.
    • (14) (a) Lieńard, B. M. R.; Garau, G.; Horsfall, L.; Karsisiotis, A. I.; Damblon, C.; Lassaux, P.; Papamicael, C.; Roberts, G. C. K.; Galleni, M.; Dideberg, O.; Frer̀e, J.-M.; Schofield, C. J. Structural basis for the broad-spectrum inhibition of metallo-β-lactamases by thiols. Org.
    • Biomol. Chem. 2008, 6, 2282−2294. (b) Lieńard, B. M., R.; Hüting, R.; Lassaux, P.; Galleni, M.; Frer̀e, J.-M.; Schofield, C. J. Dynamic combinatorial mass spectrometry leads to metallo-β-lactamase inhibitors. J. Med. Chem. 2008, 51, 684−688.
    • (15) Walter, M. W.; Felici, A.; Galleni, M.; Paul Soto, R.; Adlington, R. M.; Baldwin, J. E.; Frer̀e, J.-M.; Gololobov, M.; Schofield, C. J.
    • Bioorg. Med. Chem. Lett. 1996, 6, 2455−2458.
    • (16) (a) Fast, W.; Sutton, L. D. Metallo-β-lactamase: Inhibitors and reporter substrates. Biochim. Biophys. Acta, Proteins Proteomics 2013, 1834, 1648−1659. (b) Toney, J. H.; Moloughney, J. G. Metallo-β- lactamase inhibitors: Promise for the future? Curr. Opin. Invest. Drugs 2004, 5, 823−826. (c) Spencer, J.; Walsh, T. R.; New, A. Approach to the inhibition of metallo-β-lactamases. Angew. Chem., Int. Ed. 2006, 45, 1022−1026.
    • (17) (a) Moali, C.; Anne, C.; Lamotte-Brasseur, J.; Groslambert, S.; Devreese, B.; Van Beeumen, J.; Galleni, M.; Frer̀e, J.-M. Analysis of the importance of the metallo-β-lactamase active site loop in substrate binding and catalysis. Chem. Biol. 2003, 10, 319−329. (b) Saradhi Borra, P.; Samuelsen, Ø.; Spencer, J.; Walsh, T. R.; Sjo Lorentzen, M.; Leirose, H.-K. S. Crystal structures of Pseudomonas aeruginosa GIM-1: Active-site plasticity in metallo-β-lactamases. Antimicrob. Agents Chemother. 2013, 57, 848−854.
    • (18) (a) Viswanatha, T.; Marrone, L.; Goodfellow, V.; Dmitrienko, G. I. Assays for β-lactamase activity and inhibition. Methods Mol. Med.
    • 2008, 142, 239−260. (b) Kocaoglu, O.; Calvo, R. A.; Sham, L.-T.; Cozy, L. M.; Lanning, B. R.; Francis, S.; Winkler, M. E.; Kearns, D. B.; Carlson, E. E. Selective penicillin-binding protein imaging probes reveal substructure in bacterial cell division. ACS Chem. Biol. 2012, 7, 1746−1753. (c) Zheng, X.; Sallium, U. W.; Verma, S.; Athar, H.; Evans, C. L.; Hasan, T. Exploiting a bacterial drug-resistance mechanism: A light-activated construct for the destruction of MRSA.
    • Angew. Chem., Int. Ed. 2009, 48, 2148−2151.
    • (19) Jones, R. N.; Wilson, H. W.; Novick, W. J., Jr.; Barry, A. L.; Thornberry, C. In vitro evaluation of CENTA, a new β-lactamasesusceptible chromogenic cephalosporin reagent. J. Clin. Microbiol.
    • (20) Jones, R. N.; Wilson, H. W.; Novick, Jr. In vitro evaluation of pyridine-2-azo-p-dimethylaniline cephalosporin, a new diagnostic chromogenic reagent, and comparison with nitrocefin, cephacetrile, and other β-lactam compounds. J. Clin. Microbiol. 1982, 15, 677−683.
    • (21) Shannon, K.; Phillips, I. β-Lactamase detection by three simple methods: Intralactam, nitrocefin and acidimetric. J. Antimicrob.
    • Chemother. 1980, 6, 617−621.
    • (22) (a) Gao, W.; Xing, B.; Tsien, R. Y.; Rao, J. Novel fluorogenic substrates for imaging β-lactamase gene expression. J. Am. Chem. Soc.
    • 2003, 125, 11146−11147. (b) Rukavishnikov, A.; Gee, K. R.; Johnson, I.; Corry, S. Fluorogenic cephalosporin substrates for β-lactamase TEM-1. Anal. Biochem. 2011, 419, 9−16. (c) Zhang, Y.-L.; Xiao, J.-M.; Feng, J.-L.; Yang, K.-W.; Feng, L.; Zhou, L.-S.; Crowder, M. W. A novel fluorogenic substrate for dinuclear Zn(II)-containing metallo-β- lactamases. Bioorg. Med. Chem. Lett. 2013, 23, 1676−1679.
    • (23) Yao, H.; So, M.-K.; Rao, J.; Bioluminogenic, A. Substrate for in vivo imaging of β-lactamase activity. Angew. Chem., Int. Ed. 2007, 46, 7031−7034.
    • (24) (a) Watanabe, S.; Mizukami, S.; Hori, Y.; Kikuchi, K. Multicolor protein labeling in living cells using mutant β-lactamase-tag technology. Bioconjugate Chem. 2010, 21, 2320−2326. (b) Mizukami, S.; Watanabe, S.; Akimoto, Y.; Kikuchi, K. No-wash protein labeling with designed fluorogenic probes and application to real-time pulsechase analysis. J. Am. Chem. Soc. 2012, 134, 1623−1629. (c) Shao, Q.; Xing, B. Enzyme responsive luminescent ruthenium(II) cephalosporin probe for intracellular imaging and photoinactivation of antibiotics resistant bacteria. Chem. Commun. 2012, 48, 1739−1741.
    • (25) References for plasmid production: (a) Griffin, D. H.; Richmond, T. K.; Sanchez, C.; Jon Moller, A.; Breece, R. M.; Tierney, D. L.; Bennett, B.; Crowder, M. W. Structural and kinetic studies on metallo-β-lactamase IMP-1. Biochemistry 2011, 50, 9125− 9134 (IMP-1). (b) de Seny, D.; Prosperi-Meys, C.; Bebrone, C.; Maria Rossolini, G.; Page, M. I.; Noel, P.; Frer̀e, J.-M.; Galleni, M. Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-β-lactamase. Biochem. J. 2002, 363, 687−696 (Bc II).
    • (c) Green, V. L.; Verma, A.; Owens, R. J.; Phillipsa, S. E. V.; Carr, S. B. Structure of New Delhi metallo-β-lactamase 1 (NDM-1). Acta Crystallogr. 2011, F67, 1160−1164 (NDM-1).
    • (26) Berrow, N. S.; Alderton, D.; Sainsbury, S.; Nettleship, J.; Assenberg, R.; Rahman, N.; Stuart, D. I.; Owens, R. J. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 2007, 35, e45.
    • (27) Bebrone, C.; Moali, C.; Mahy, F.; Rival, S.; Docquier, J.-D.; Maria Rossolini, G.; Fastrez, J.; Pratt, R. F.; Frer̀e, J.-M.; Galleni, M.
    • Antimicrob. Agents Chemother. 2001, 45, 1868−1871.
    • (28) For experimental details see the Supporting Information.
    • (29) Typically mCPBA oxidation to give the (S)-sulfoxide; see: Kaiser, G. V.; Cooper, R . D. G.; Koehler, R. E.; Murphy, C. F.; Webber, J. A.; Wright, I. G.; van Heyningen, E. M. Transformation of Δ2-cephem to Δ3-cephem by oxidation-reduction at sulfur. J. Org.
    • Chem. 1970, 35, 2430−2433.
    • (30) Goddard, J.-P.; Reymond, J.-L. Enzyme assays for highthroughput screening. Curr. Opin. Biotechnol. 2004, 15, 314−322.
    • (31) Xie, H.; Mire, J.; Kong, Y.; Chang, M.; Hassounah, H. A.; Thornton, C. N.; Sacchettini, J. C.; Cirillo, J. D.; Rao, J. Rapid pointof-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe. Nat. Chem. 2012, 4, 802−809.
    • (32) The optimal absorption wavelength for umbelliferone in HEPES buffer was found to be 330 nm with a second absorption band at 380 nm. Fluorogenic substrates FC3−FC5 did not show this second absorption band at 380 nm, allowing the specific excitation of umbelliferone at this wavelength.
    • (33) Kim, Y.; Tesar, C.; Mire, J.; Jedrzejczak, R.; Binkowski, A.; Babnigg, G.; Sacchettini, J.; Joachimiak, A. Structure of apo- and monometalated forms of NDM-1A highly potent carbapenemhydrolyzing metallo-β-lactamase. PLoS One 2011, 6, e24621.
    • (34) Docquier, J.-D.; Lamotte-Brasseur, J.; Galleni, M.; Amicosante, G.; Frer̀e, J.-M.; Maria Rossolini, G. On functional and structural heterogeneity of VIM-type metallo-β-lactamases. J. Antimicrob. Chemother. 2003, 51, 257−266.
    • (35) Laraki, N.; Franceschini, N.; Rossolini, G. M.; Santucci, P.; Meunier, C.; de Pauw, E.; Amicosante, G.; Frer̀e, J.-M.; Galleni, M.
    • Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-β-lactamase IMP-1 produced by Escherichia coli. Antimicrob.
    • Agents Chemother. 1999, 43, 902−906.
    • (36) Murphy, T. A.; Simm, A. M.; Toleman, M. A.; Jones, R. N.; Walsh, T. R. Biochemical characterization of the acquired metallo-β- lactamase SPM-1 from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2003, 47, 582−587.
    • (37) Paul-Soto, R.; Hernadez-Valladares, M.; Fonze,́ E.; Goussard, S.; Courvalin, P.; Frer̀e, J.-M. Mono- and binuclear Zn-β-lactamase from Bacteroides fragilis: Catalytic and structural roles of the zinc ions. FEBS Lett. 1998, 438, 137−140.
    • (38) Felici, A.; Amicosante, G. Kinetic Analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-β-lactamases. Antimicrob. Agents Chemother. 1995, 39, 192−199.
    • (39) Young, D.; Toleman, M. A.; Giske, G. C.; Cho, C. H.; Sundman, K.; Lee, K.; Walsh, T. R. Characterization of a new metallo-β-lactamase gene, blaNDM‑1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046−5054.
    • (40) Badarau, A.; Llinaś, A.; Laws, A. P.; Damblon, C.; Page, M. I.
    • Biochemistry 2005, 44, 8578−8589.
    • (41) Astrid Zervosen, A.; Hernandez Valladares, M.; Devreese, B.; Prosperi-Meys, C.; Adolph, H.-W.; Sandra Mercuri, P.; Vanhove, M.; Amicosante, G.; van Beeumen, J.; Frer̀e, J.-M.; Galleni, M. Inactivation of Aeromonas hydrophila metallo-β-lactamase by cephamycins and moxalactam. Eur. J. Biochem. 2001, 268, 3840−3850.
    • (42) Fonseca, F.; Arthur, C. J.; Bromley, E. H. C.; Samyn, B.; Moerman, P.; Saavedra, M. J.; Correia, A.; Spencer, J. Biochemical characterization of Sfh-I, a subclass B2 metallo-β-lactamase from Serratia fonticola UTAD54. Antimicrob. Agents Chemother. 2011, 55, 5392−5395.
    • (43) Low KM values can result in a low signal readout; in particular, when chromogenic substrates are used, this can decrease the sensitivity of the method (i.e., lead to high interexperimental error during kinetic measurements). Moreover, by using a high-affinity substrate (low KM), it is generally not possible to detect potential slow-binding inhibitors as, for example, in the case of NDM-1/nitrocefin, where the substrate presented a low micromolar range KM, with the enzyme concentration being in the same micromolar range (also see ref 44).
    • (44) Siemann, S.; Clarke, A. J.; Viswanatha, T.; Dmitrienko, G. I.
    • Thiols as classical and slow-binding inhibitors of IMP-1 and other binuclear metallo-β-lactamases. Biochemistry 2003, 42, 1673−1683.
    • (45) (a) Badarau, A.; Llinas, A.; Laws, A. P.; Damblon, C.; Page, M. I.
    • Biochemistry 2005, 44, 8578−8589. (b) Murphy, T. A; Catto, L. E.; Halford, S. E.; Hadfield, A. T.; Minor, W.; Walsh, T. R.; Spencer, J.
    • Crystal structure of Pseudomonas aeruginosa SPM-1 provides insights into variable zinc affinity of metallo-β-lactamases. J. Mol. Biol. 2006, 357, 890−903.
    • (46) Zhang, H.; Hao, Q. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J. 2011, 25, 2574− 2582.
    • (47) Garcia-Saez, I.; Docquier, J. D.; Rossolini, G. M.; Dideberg, O.
    • The three-dimensional structure of VIM-2, a Zn-β-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. J. Mol. Biol.
    • (48) (a) Goodsell, D. S.; Morris, G. M.; Olson, A. J. Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Recognit.
    • 1996, 9, 1−5. (b) Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M.
    • F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785−2791.
    • (49) (a) Gillet, V.; Johnson, A. P.; Mata, P.; Sike, S.; Williams, P.
    • Des. 1993, 7, 127−153. (b) Gillet, V. J.; Newell, W.; Mata, P.; Myatt, G.; Sike, S.; Zsoldos, Z.; Johnson, A. P. SPROUT: Recent developments in the de novo design of molecules. J. Chem. Inf.
    • Comput. Sci. 1994, 34, 207−217.
    • (50) Cadag, E.; Vitalis, E.; Lennox, K. P.; Zhou, C. L. E.; Zemla, A. T.
    • Computational analysis of pathogen-borne metallo β-lactamases reveals discriminating structural features between B1 types. BMC Res. Notes 2012, 5, 96.
    • (51) (a) Stubbs, C. J.; Loenarz, C.; Mecinovic,́ J.; Kheng Yeoh, K.; Hindley, N.; Lieńard, B. M.; Sobott, F.; Schofield, C. J.; Flashman, E.
    • 2009, 52, 2799−2805. (b) Tian, Y.-M.; Yeoh, K. K.; Lee, M. K.; Eriksson, T.; Kessler, B. M.; Kramer, H. B.; Edelmann, M. J.; Willam, C.; Pugh, C. W.; Schofield, C. J.; Ratcliffe, P. J. Differential sensitivity of hypoxia inducible factor hydroxylation sites to hypoxia and hydroxylase inhibitors. J. Biol. Chem. 2011, 286, 13041−13051.
    • (52) (a) Heinz, U.; Bauer, R.; Wommer, S.; Meyer-Klaucke, W.; Papamichaels, C.; Bateson, J.; Adolph, H.-W. Coordination geometries of metal ions in D- or L-captopril-inhibited metallo-β-lactamases. J.
    • Biol. Chem. 2003, 278, 20659−20666. (b) King, D. T.; Worrall, L. J.; Gruninger, R.; Strynadka, N. C. New Delhi metallo-β-lactamase: Structural insights into β-lactam recognition and inhibition. J. Am.
    • Chem. Soc. 2012, 134, 11362−11365.
    • (53) Conversion of IC50 to Ki was performed according to Cer et al.: Cer, R. Z.; Mudunuri, U.; Stephens, R.; Lebeda, F. J. IC50-to-Ki: A Web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding. Nucleic Acids Res. 2009, 37, W441−W445.
    • (54) Guo, Y.; Wang, J.; Niu, G.; Shui, W.; Sun, Y.; Zhou, H.; Zhang, Y.; Yang, C.; Lou, Z.; Rao, Z. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Protein Cell 2011, 2, 384−394.
  • Discovered through pilot similarity algorithms. Send us your feedback.

  • BioEntity Site Name
    1jjtProtein Data Bank
    1ko3Protein Data Bank
    3q6xProtein Data Bank

Share - Bookmark

Funded by projects

Cite this article