LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Meili; Chang, Jian; Jens, Kerber; Zhang, Jian J. (2012)
Languages: English
Types: Article
Subjects: des, csi, ga
Sunken relief is a special art form of sculpture whereby the depicted shapes are sunk into a given surface. This is traditionally created by laboriously carving materials such as stone. Sunken reliefs often utilize the engraved lines or strokes to strengthen the impressions of a 3D presence and to highlight the features which otherwise are unrevealed. In other types of reliefs, smooth surfaces and their shadows convey such information in a coherent manner. Existing methods for relief generation are focused on forming a smooth surface with a shallow depth which provides the presence of 3D figures. Such methods unfortunately do not help the art form of sunken reliefs as they omit the presence of feature lines. We propose a framework to produce sunken reliefs from a known 3D geometry, which transforms the 3D objects into three layers of input to incorporate the contour lines seamlessly with the smooth surfaces. The three input layers take the advantages of the geometric information and the visual cues to assist the relief generation. This framework alters existing techniques in line drawings and relief generation, and then combines them organically for this particular purpose.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. FLAXMAN J.: Lectures on Sculpture. Charles Knight, Pall Mall East(1829), London.
    • 2. ROGERS R.: Relief sculpture. Oxford University Press (1974), Oxford.
    • 3. WANG M., CHANG J., ZHANG J.J.: A review of digital relief generation techniques. In The 2nd International Conference on Computer Engineering and Technology (ICCET 2010) (Apr. 2010), Chengdu, China .
    • 4. PERRY, R. N., FRISKEN, S. F.: Kizamu: a system for sculpting digital characters. In SIGGRAPH'01, (2001), 47-56.
    • 5. SOURIN A..: Functionally based virtual computer art. In SI3D '01: Proceedings of the 2001 symposium on Interactive 3D graphics (2001), 77-84.
    • 6. SOURIN A.: Functionally based virtual embossing. The Visual Computer, Springer 17,4 (2001), 258-271.
    • 7. PASKO A., SAVCHENKO V., SOURIN A.: Synthetic carving using implicit surface primitives. Computer Aided Design 33, 5 (2001), 379-388.
    • 8. CIGNONI P., MONTANI C., SCOPIGNO R.: Computer-assisted generation of bas- and high- reliefs. Journal of Graphics Tools 2, 3 (1997), 15-28.
    • 9. BELHUMEUR P.N., KRIEGMAN D.J., YUILLE A.L.: The bas-relief ambiguity. International Journal of Computer Vision 35, 1 (1999), 33-44.
    • 10. SONG W., BELYAEV A., SEIDEL H.P.: Automatic generation of bas-relief from 3D shapes. In SMI'07: Proceedings of the IEEE International Conference on Shape Modelling and Applications (2007), 211-214.
    • 11. KERBER J., BELYAEV A. SEIDEL H.P.: Feature preserving depth compression of range images. Proceedings of the 23rd spring conference on computer graphics (2007), 110-114.
    • 12. FATTAL R., LISCHINSKI D., WERMAN, M.: Gradient domain high dynamic range compression. ACM Transactions on Graphics 21,3 (2002), 249-256.
    • 13. WEYRICH T., DENG J., BARNES C., RUSINKIEWICZ S., FINKELSTEIN A.: Digital bas-relief from 3D scenes. ACM Transactions on Graphics 26, 3 (2007), 32-39.
    • 14. KERBER J., TEVS A., BELYAEV A., ZAYER R., SEIDEL H.P.: Feature Sensitive Bas Relief Generation. IEEE International Conference on Shape Modelling and Applications (2009), 148-154.
    • 15. KERBER J., TEVS A., ZAYER R., BELYAEV A., SEIDEL P.: Real-time generation of digital bas-reliefs. Computer-Aided Design and Applications, Special Issue: CAD in the Arts 7, 4 (2010), 465-478.
    • 16. SUN X., ROSIN P.L., MARTIN R.R., LANGBEIN F.C.: Bas-relief generation using adaptive histogram equalization. IEEE Transactions on Visualization and Computer Graphics 15, 4 (2009), 642-653.
    • 17. AGRAWAL A., RASKAR R., CHELLAPPA R.: What is the range of surface reconstructions from a gradient field? Computer Vision- European Conference on Computer Vision (2006), 578-591.
    • 18. ZENG G., MATSUSHITA Y., QUAN L., SHUM H.Y.: Interactive shape from shading. In Conference on Computer Vision and Pattern Recognition (2005), vol 1, 343-350.
    • 19. ZHANG R., TSAI P., CRYER J. E., SHAH M.: Shape from shading: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 8 (1999), 690-706.
    • 20. WU T.P., SUN J., TANG C.K., SHUM H.Y.: Interactive normal reconstruction from a single image. In SIGGRAPH Asia'08 27, 5 (2008), 1-9.
    • 21. WANG M., CHANG J., PAN J., ZHANG J.J.: Image-based bas-relief generation with gradient operation. In Proceedings of the 11th IASTED International Conference Computer Graphics and Imaging (CGIM 2010) (Feb., 2010) Innsbruck, Austria.
    • 22. ALEXA M., MATUSIK W.: Reliefs as images. ACM Transactions on Graphics 29, 4 (2010), 1-7.
    • 23. RUSINKIEWICZ S., COLE F., DECARLO D., FINKELSTEIN A.: Line drawings from 3D models. SIGGRAPH 2008 Course Notes. http://www.cs.princeton.edu/gfx/proj/sg08lines/ 24. KOENDERINK J.J.: What does the occluding contour tell us about solid shape? Perception 13, 3 (1984), 321-330.
    • 25. KALNINS R.D., MARKOSIAN, L., MEIER, B.J., KOWALSKI, M.A., LEE, J.C., DAVIDSON, P.L., WEBB, M., HUGHES, J.F., FINKELSTEIN A.: WYSIWYG NPR: drawing strokes directly on 3D models. ACM Transactions on Graphics. 21, 3 (2002).755-762.
    • 26. MARKOSIAN L., KOWALSKI M.A, GOLDSTEIN D., TRYCHIN S.J., HUGHES J.F., BOURDEV L.D.: Real-time nonphotorealistic rendering. In SIGGRAPH'97, (1997), 415-420.
    • 27. RASKAR R.: Hardware support for non-photorealistic rendering. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware (2001), 41-47.
    • 28. DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S., SANTELLA A.: Suggestive contours for conveying shape. ACM Transactions on Graphics 22, 3 (2003), 848-855.
    • 29. DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S.: Interactive rendering of suggestive contours with temporal coherence. In Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering (2004), 15-145.
    • 30. SOUSA M.C., PRUSINKIEWICZ P.: A few good lines: Suggestive drawing of 3d models. Computer Graphics Forum 22, 3 (2003), 381-390.
    • 31. COLE, F., GOLOVINSKIY, A., LIMPAECHER, A., BARROS, H.S., FINKELSTEIN, A., FUNKHOUSER, T., RUSINKIEWICZ, S.: Where do people draw lines? ACM Transactions on Graphics 27, 3 (2008), 1-11.
    • 32. COLE, F., SANIK, K., DECARLO, D., FINKELSTEIN, A., FUNKHOUSER, T., RUSINKIEWICZ, S., SINGH, M.: How well do line drawings depict shape? ACM Transactions on Graphics 28,3 (2009), 1-9.
    • 33. HAHNE, U., 2006. Weighting in Laplacian Mesh Editing. http://www.cg.tuberlin.de/fileadmin/webdav/hahne/diploma/diploma.pdf
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article