LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ortega-Martorell, S; Olier, I; Delgado-Goni, T; Ciezka, M; Julià-Sapé, M; Lisboa, P; Arús, C
Publisher: IEEE
Languages: English
Types: Unknown
Subjects: RC0254, QA75
Glioblastomas are one the most aggressive brain tumors. Their usual bad prognosis is due to the heterogeneity of their response to treatment and the lack of early and robust biomarkers to decide whether the tumor is responding to therapy. In this work, we propose the use of a semi-supervised methodology for source extraction to identify the sources representing tumor response to therapy, untreated/unresponsive tumor, and normal brain; and create nosological images of the response to therapy based on those sources. Fourteen mice were used to calculate the sources, and an independent test set of eight mice was used to further evaluate the proposed approach. The preliminary results obtained indicate that was possible to discriminate response and untreated/unresponsive areas of the tumor, and that the color-coded images allowed convenient tracking of response, especially throughout the course of therapy.

Share - Bookmark

Download from

Cite this article