Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tantra, R; Oksel, C; Puzyn, T; Wang, J; Robinson, KN; Wang, XZ; Ma, CY; Wilkins, T (2015)
Publisher: Taylor & Francis
Languages: English
Types: Article

Classified by OpenAIRE into

mesheuropmc: fungi, body regions, skin and connective tissue diseases
Regulation for nanomaterials is urgently needed, and the drive to adopt an intelligent testing strategy is evident. Such a strategy will not only provide economic benefits but will also reduce moral and ethical concerns arising from animal testing. For regulatory purposes, such an approach is promoted by REACH, particularly the use of quantitative structure–activity relationships [(Q)SAR] as a tool for the categorisation of compounds according to their physicochemical and toxicological properties. In addition to compounds, (Q)SAR has also been applied to nanomaterials in the form of nano(Q)SAR. Although (Q)SAR in chemicals is well established, nano(Q)SAR is still in early stages of development and its successful uptake is far from reality. This article aims to identify some of the pitfalls and challenges associated with nano-(Q)SARs in relation to the categorisation of nanomaterials. Our findings show clear gaps in the research framework that must be addressed if we are to have reliable predictions from such models. Three major barriers were identified: the need to improve quality of experimental data in which the models are developed from, the need to have practical guidelines for the development of the nano(Q)SAR models and the need to standardise and harmonise activities for the purpose of regulation. Of these three, the first, i.e. the need to improve data quality requires immediate attention, as it underpins activities associated with the latter two. It should be noted that the usefulness of data in the context of nano-(Q)SAR modelling is not only about the quantity of data but also about the quality, consistency and accessibility of those data.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Roco, M. C.; Bainbridge, W. S.: Societal implications of nanoscience and nanotechnology: Maximizing human benefit. J. Nanopart. Res. 2005, 7, 1-13.
    • (2) Tantra, R.; Shard, A.: We need answers. Nat. Nanotechnol. 2013, 8, 71-71.
    • (3) Bajorath, J.: Chemoinformatics: concepts, methods, and tools for drug discovery; Springer, 2004; Vol. 275.
    • (4) Duffus, J. H.; Nordberg, M.; Templeton, D. M.: Glossary of terms used in toxicology, (IUPAC recommendations 2007). Pure Appl. Chem. 2007, 79, 1153-1344.
    • (5) Patlewicz, G. "Chemical Categories and Read Across," Joint Research Centre, (6) Lahl, U.; Gundert-Remy, U.: The use of (Q) SAR methods in the context of REACH. Toxicol. Mech. Methods 2008, 18, 149-158.
    • (7) OECD: Guidance Document on the Validation of (Quantitative) StructureActivity Relationship Models. 2007.
    • (8) OECD: Guidance on the Grouping of Chemicals. 2007.
    • (9) van Leeuwen, C.; Vermeire, T.; Vermeire, T.: Risk assessment of chemicals: an introduction; Springer, 2007.
    • (10) Burello, E.; Worth, A. P.: QSAR modeling of nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2011, 3, 298-306.
    • (11) Dudek, A. Z.; Arodz, T.; Galvez, J.: Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb. Chem. High Throughput Screening 2006, 9, 213-228.
    • (12) Wessel, M. D.; Jurs, P. C.: Prediction of reduced ion mobility constants from structural information using multiple linear regression analysis and computational neural networks. Anal. Chem. 1994, 66, 2480-2487.
    • (13) Fischer, M.: Computational neural networks: a new paradigm for spatial analysis. Environment and Planning A 1997, 30, 1873-1891.
    • (14) Guha, R.; Jurs, P. C.: Interpreting computational neural network QSAR models: a measure of descriptor importance. J. Chem. Inf. Model. 2005, 45, 800-806.
    • (15) Yao, X.; Panaye, A.; Doucet, J.-P.; Zhang, R.; Chen, H.; Liu, M.; Hu, Z.; Fan, B. T.: Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J. Chem. Inf. Comput. Sci. 2004, 44, 1257-1266.
    • (16) Winkler, D. A.; Burden, F. R.: Application of Neural Networks to Large Dataset QSAR, Virtual Screening, and Library Design #. In T Combinatorial Library, 2002; Vol. 201; pp 325-367.
    • (17) Eriksson, L.; Andersson, P. L.; Johansson, E.; Tysklind, M.: Megavariate analysis of environmental QSAR data. Part I A basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD). Mol. Diversity 2006, 10, 169-186.
    • (18) Cardin, R.; Michielan, L.; Moro, S.; Sperduti, A.: PCA-Based Representations of Graphs for Prediction in QSAR Studies. In Artificial Neural Networks ICANN 2009; Springer, 2009; pp 105-114.
    • (19) Sussman, N.; Arena, V.; Yu, S.; Mazumdar, S.; Thampatty, B.: Decision tree SAR models for developmental toxicity based on an FDA/TERIS database. SAR QSAR Environ. Res. 2003, 14, 83-96.
    • (20) Verhaar, H.; Van Leeuwen, C.; Bol, J.; Hermens, J.: Application of QSARs in risk management of existing chemicals. SAR QSAR Environ. Res. 1994, 2, 39-58.
    • (21) Hulzebos, E.; Janssen, P.; Maslankiewicz, L.; Meijerink, M.; Muller, J.; Pelgrom, S.; Verdam, L.; Vermeire, T.: The application of structure-activity relationships in human hazard assessment: a first approach. 2001.
    • (22) Cronin, M. T.; Jaworska, J. S.; Walker, J. D.; Comber, M. H.; Watts, C. D.; Worth, A. P.: Use of QSARs in international decision-making frameworks to predict health effects of chemical substances. Environ. Health Perspect. 2003, 111, 1391.
    • (23) Patlewicz, G.; Ball, N.; Booth, E. D.; Hulzebos, E.; Zvinavashe, E.; Hennes, C.: Use of Category approaches, Read-across and (Q) SAR: General considerations. Regulatory Toxicology and Pharmacology 2013.
    • (24) Tebby, C.; Mombelli, E.; Pandard, P.; Péry, A. R.: Exploring an ecotoxicity database with the OECD (Q) SAR Toolbox and DRAGON descriptors in order to prioritise testing on algae, daphnids, and fish. Sci. Total Environ. 2011, 409, 3334-3343.
    • (25) Petkov, P.; Temelkov, S.; Villeneuve, D.; Ankley, G.; Mekenyan, O.: Mechanism-based categorization of aromatase inhibitors: a potential discovery and screening tool. SAR QSAR Environ. Res. 2009, 20, 657-678.
    • (26) Bolcic-Tavcar, M.; Vracko, M.: Assessing the reproductive toxicity of some (con) azole compounds using a structure-activity relationship approach. SAR QSAR Environ. Res. 2009, 20, 7-8.
    • (27) Gubbels-Van Hal, I.: Non-testing in REACH? Chimica oggi 2007, 25, 14-16.
    • (28) Mekenyan, O.; Dimitrov, S.; Pavlov, T.; Veith, G.: POPs: A QSAR system for developing categories for persistent, bioacculative and toxic chemicals and their metabolites. SAR QSAR Environ. Res. 2005, 16, 103-133.
    • (29) Byers, D.; Szerlog, M.; Air; Waste Management, A.: A rapid and low cost hazard categorization technique for identifying hazardous wastes, 1997.
    • (30) Mansouri, K.; Ringsted, T.; Ballabio, D.; Todeschini, R.; Consonni, V.: Quantitative Structure Activity Relationship Models for Ready Biodegradability of Chemicals. J. Chem. Inf. Model. 2013, 53, 867-878.
    • (31) Lowe, M. F.; McCall, D.: Globally Harmonized System of Classification and Labelling of Chemicals (GHS). US Environmental Agency, Arlington USA 2009.
    • (32) Cronin, M. T.; Walker, J. D.; Jaworska, J. S.; Comber, M. H.; Watts, C. D.; Worth, A. P.: Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environ. Health Perspect. 2003, 111, 1376.
    • (33) Goldberg, L.: Structure-activity correlation as a predictive tool in toxicology. HEMISPHERE PUBL. CORP., 19 WEST 44 TH ST., NEW YORK, NY 10036, USA. 1983. 1983.
    • (34) Cassani, S.; Kovarich, S.; Papa, E.; Roy, P. P.; van der Wal, L.; Gramatica, P.: Daphnia and fish toxicity of (benzo) triazoles: Validated QSAR models, and interspecies quantitative activity-activity modelling. J. Hazard. Mater. 2013.
    • (35) Mayer, J.; Cheeseman, M.; Twaroski, M.: Structure activity relationship analysis tools: validation and applicability in predicting carcinogens. Regulatory Toxicology and Pharmacology 2008, 50, 50-58.
    • (36) McKinney, J. D.; Richard, A.; Waller, C.; Newman, M. C.; Gerberick, F.: The practice of structure activity relationships (SAR) in toxicology. Toxicol. Sci. 2000, 56, 8-17.
    • (37) Benigni, R.; Bossa, C.: Predictivity and reliability of QSAR models: the case of mutagens and carcinogens. Toxicol. Mech. Methods 2008, 18, 137-147.
    • (38) Determinants of Juvenile Hormone Action as Revealed by 3D QSAR Analysis in Drosophila. PLoS One 2009, 4, e6001.
    • (39) Glotzer, S. C.; Solomon, M. J.: Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 2007, 6, 557-562.
    • (40) Foss Hansen, S.; Larsen, B. H.; Olsen, S. I.; Baun, A.: Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 2007, 1, 243-250.
    • (41) Stone, V.; Nowack, B.; Baun, A.; van den Brink, N.; von der Kammer, F.; Dusinska, M.; Handy, R.; Hankin, S.; Hassellöv, M.; Joner, E.: Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci. Total Environ. 2010, 408, 1745-1754.
    • (42) Puzyn, T.; Leszczynska, D.; Leszczynski, J.: Toward the Development of Nano QSARs : Advances and Challenges. Small 2009, 5, 2494-2509.
    • (43) Fourches, D.; Pu, D.; Tropsha, A.: Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles. Comb. Chem. High Throughput Screening 2011, 14, 217-225.
    • (44) Winkler, D. A.; Mombelli, E.; Pietroiusti, A.; Tran, L.; Worth, A.; Fadeel, B.; McCall, M. J.: Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential. Toxicology 2012.
    • (45) Mays, C.; Benfenati, E.; Pardoe, S.: Use and perceived benefits and barriers of QSAR models for REACH: findings from a questionnaire to stakeholders. Chemistry Central Journal 2012, 6, 1-9.
    • (46) Fourches, D.; Pu, D.; Tassa, C.; Weissleder, R.; Shaw, S. Y.; Mumper, R. J.; ACS Nano 2010, 4, 5703-5712.
    • (47) Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X.; Dasari, T. P.; Michalkova, A.; Hwang, H.-M.; Toropov, A.; Leszczynska, D.; Leszczynski, J.: Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 2011, 6, 175-178.
    • (48) Burello, E.; Worth, A. P.: A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 2011, 5, 228-235.
    • (49) Liu, R.; Rallo, R.; George, S.; Ji, Z.; Nair, S.; Nel, A. E.; Cohen, Y.: Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small 2011, 7, 1118-1126.
    • (50) Epa, V. C.; Burden, F. R.; Tassa, C.; Weissleder, R.; Shaw, S.; Winkler, D. A.: Modeling Biological Activities of Nanoparticles. Nano Lett. 2012, 12, 5808-5812.
    • (51) Ghorbanzadeh, M.; Fatemi, M. H.; Karimpour, M.: Modeling the Cellular Uptake of Magnetofluorescent Nanoparticles in Pancreatic Cancer Cells: A Quantitative Structure Activity Relationship Study. Ind. Eng. Chem. Res. 2012, 51, 10712-10718.
    • (52) Shao, C.-Y.; Chen, S.-Z.; Su, B.-H.; Tseng, Y. J.; Esposito, E. X.; Hopfinger, A. J.: Dependence of QSAR Models on the Selection of Trial Descriptor Sets: A Demonstration Using Nanotoxicity Endpoints of Decorated Nanotubes. J. Chem. Inf. Model. 2013, 53, 142-158.
    • (53) Liu, R.; Rallo, R.; Weissleder, R.; Tassa, C.; Shaw, S.; Cohen, Y.: Nano SAR Development for Bioactivity of Nanoparticles with Considerations of Decision Boundaries. Small 2013.
    • (54) Liu, R.; Zhang, H. Y.; Ji, Z. X.; Rallo, R.; Xia, T.; Chang, C. H.; Nel, A.; Cohen, Y.: Development of Structure-Activity Relationship for Metal Oxide Nanoparticles. Nanoscale 2013.
    • (55) Baalousha, M.; Lead, J. R.: Nanoparticle dispersity in toxicology. Nat. Nanotechnol. 2013, 8, 308-309.
    • (56) Kearns, P.; Gonzalez, M.; Oki, N.; Lee, K.; Rodriguez, F.: The safety of nanotechnologies at the OECD. In Nanomaterials: Risks and Benefits; Springer, 2009; pp 351-358.
    • (57) Nelson, B. C.; Petersen, E. J.; Marquis, B. J.; Atha, D. H.; Elliott, J. T.; Cleveland, D.; Watson, S. S.; Tseng, I.-H.; Dillon, A.; Theodore, M.: NIST gold nanoparticle reference materials do not induce oxidative DNA damage. Nanotoxicology 2013, 7, 21-29.
    • (58) Anderson, W.; Kozak, D.; Coleman, V. A.; Jämting, . K.; Trau, M.: A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J. Colloid Interface Sci. 2013, 405, 322-330.
    • (59) Fadeel, B.; Savolainen, K.: Broaden the discussion. Nat. Nanotechnol. 2013, 8, 71-71.
    • (60) McCall, M. J.; Coleman, V. A.; Herrmann, J.; Kirby, J. K.; Gardner, I. R.; Brent, P. J.; Johnson, C. M.: A tiered approach. Nat. Nanotechnol. 2013, 8, 307-308.
    • (61) Esch, R. K.; Han, L.; Foarde, K. K.; Ensor, D. S.: Endotoxin contamination of engineered nanomaterials. Nanotoxicology 2010, 4, 73-83.
    • (62) Monteiro-Riviere, N. A.; Tran, C. L.: Nanotoxicology: Progress toward Nanomedicine; CRC Press, 2014.
    • (63) Neumeyer, A.; Bukowski, M.; Veith, M.; Lehr, C.-M.; Daum, N.: Non-invasive determination of cellular oxygen consumption as novel cytotoxicity assay for nanomaterials. Nanotoxicology 2014, 8, 50-60.
    • (64) Hsiao, I.-L.; Huang, Y.-J.: Improving the interferences of methyl thiazolyl tetrazolium and IL-8 assays in assessing the cytotoxicity of nanoparticles. J. Nanosci. Nanotechnol. 2011, 11, 5228-5233.
    • (65) Murdock, R. C.; Braydich-Stolle, L.; Schrand, A. M.; Schlager, J. J.; Hussain, S. M.: Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 2008, 101, 239-253.
    • (66) Johnston, H.; Pojana, G.; Zuin, S.; Jacobsen, N. R.; Møller, P.; Loft, S.; Semmler-Behnke, M.; McGuiness, C.; Balharry, D.; Marcomini, A.: Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Critical reviews in toxicology 2013, 43, 1-20.
    • (67) Eurachem, G.: The fitness for purpose of analytical methods. A laboratory guide to method validation and related topics 1998.
    • (68) Borders, T. L.; Fonseca, A. F.; Zhang, H.; Cho, K.; Rusinko III, A.: Developing Descriptors To Predict Mechanical Properties of Nanotubes. J. Chem. Inf. Model. 2013, 53, 773-782.
    • (69) Wang, X. Z.; Yang, Y.; Li, R. F.; McGuinnes, C.; Adamson, J.; Megson, I. L.; Donaldson, K.: Principal Component and Causal Analysis of Structural and Acute in vitro Toxicity Data for Nanoparticles. Nanotoxicology 2013, 1-31.
    • (70) QSAR/QSPR Models Developed for Properties Used in Hazardous Chemicals Classification System. Ind. Eng. Chem. Res. 2012, 51, 16101-16115.
    • (71) Lubinski, L.; Urbaszek, P.; Gajewicz, A.; Cronin, M.; Enoch, S.; Madden, J.; Leszczynska, D.; Leszczynski, J.; Puzyn, T.: Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling. SAR QSAR Environ. Res. 2013, 24, 995-1008.
    • (72) Richarz, A. N.; Cronin, M.; Madden, J.; Lubinski, L.; Mokshina, E.; Urbaszek, P.; Puzyn, T.; Kuz'min, V.: Toxicity of nanomaterials: Availability and suitability of data for the development of in silico models. Toxicol. Lett. 2013, 221, S246-S246.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article