LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Barnett, Stephen M. (2017)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: QC
The desire to push recent experiments on electron vortices to higher energies has led to some theoretical \ud difficulties. In particular the simple and very successful picture of phase vortices of vortex charge $\ell$ \ud associated with $\ell\hbar$ units of orbital angular momentum per electron has been challenged by the facts \ud that: (i) the spin and orbital angular momentum are not separately conserved for a Dirac electron, which suggests\ud that the existence of a spin-orbit coupling will complicate matters and (ii) that the velocity of a Dirac electron \ud is not simply the gradient of a phase as it is in the Schr\"{o}dinger theory suggesting that, perhaps, \ud electron vortices might not exist at a fundamental level. We resolve these difficulties by showing that\ud electron vortices do indeed exist in the relativistic theory and show that the charge of such a vortex is\ud simply related to a conserved orbital part of the total angular momentum, closely related to the familiar \ud situation for the orbital angular momentum of a photon.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] P. G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992).
    • [2] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow (Cambridge University Press, Cambridge, 2002).
    • [3] D. R. Tilley and J. Tilley, Superfluidity and Superconductivity (Institute of Physics Publishing, Bristol, 1990).
    • [4] R. J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, England, 1991).
    • [5] A. J. Leggett, Quantum Liquids (Oxford University Press, Oxford, 2006).
    • [6] L. M. Pismen, Vortices in Nonlinear Fields (Oxford University Press, Oxford, 1999).
    • [7] J. F. Nye, Natural Focussing and Fine Structure of Light (Institute of Physics Publishing, Bristol, 1999).
    • [8] A. M. Yao and M. J. Padgett, Adv. Opt. Photonics 3, 161 (2011).
    • [9] The Angular Momentum of Light, edited by D. L. Andrews and M. Babiker (Cambridge University Press, Cambridge, England, 2013).
    • [10] M. Uchida and A. Tonomura, Nature (London) 464, 737 (2010).
    • [11] J. Verbeeck, H. Tian, and P. Schattschneider, Nature (London) 467, 301 (2010).
    • [12] B. J. McMorran, A. Agarwal, I. M. Anderson, A. A. Herzing, H. J. Lezer, J. J. McClelland, and J. Unguris, Science 331, 192 (2011).
    • [13] P. Schattschneider, M. Stöger-Pollach, and J. Verbeeck, Phys. Rev. Lett. 109, 084801 (2012).
    • [14] G. Guzzinati, P. Schattschneider, K. Y. Bliokh, F. Nori, and J. Verbeeck, Phys. Rev. Lett. 110, 093601 (2013).
    • [15] K. Saitoh, Y. Hasegawa, K. Hirakawa, N. Tanaka, and M. Uchida, Phys. Rev. Lett. 111, 074801 (2013).
    • [16] G. Guzzinati, L. Clark, A. Béché, and J. Verbeeck, Phys. Rev. A 89, 025803 (2014).
    • [17] A. M. Blackburn and J. C. London, Ultramicroscopy 136, 127 (2014).
    • [18] R. Shiloh, Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, Phys. Rev. Lett. 114, 096102 (2015).
    • [19] V. Grillo, A. H. Tavabi, F. Venturi, H. Larocque, R. Balboni, G. C. Gazzadi, S. Frabboni, P.-H. Lu, E. Mafakheri, F. Bouchard, R. E. Durnin-Borkowski, R. W. Boyd, M. P. J. Lavery, M. J. Padgett, and E. Karimi, arXiv:1609.09129.
    • [20] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
    • [21] L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).
    • [22] A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).
    • [23] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, Vol. 1 (Wiley, New York, 1977).
    • [24] I. Bialynicki-Birula, Z. Bialynicka-Birula, and C. Śliwa, Phys. Rev. A 61, 032110 (2000).
    • [25] K. Y. Bliokh, Y. P. Bliokh, S. Savel'ev, and F. Nori, Phys. Rev. Lett. 99, 190404 (2007).
    • [26] P. Schattschneider and J. Verbeeck, Ultramicroscopy 111, 1461 (2011).
    • [27] S. Lloyd, M. Babiker, and J. Yuan, Phys. Rev. Lett. 108, 074802 (2012).
    • [28] S. M. Lloyd, M. Babiker, and J. Yuan, Phys. Rev. A 86, 023816 (2012).
    • [29] C. R. Greenshields, R. L. Stamps, and S. Franke-Arnold, New J. Phys. 14, 103040 (2012).
    • [30] K. Y. Bliokh, P. Schattschneider, J. Verbeeck, and F. Nori, Phys. Rev. X 2, 041011 (2012).
    • [31] C. R. Greenshields, R. L. Stamps, S. Franke-Arnold, and S. M. Barnett, Phys. Rev. Lett. 113, 240404 (2014).
    • [32] M. Babiker, J. Yuan, and V. E. Lembessis, Phys. Rev. A 91, 013806 (2015).
    • [33] P. A. M. Dirac, Proc. R. Soc. A 117, 610 (1928).
    • [34] K. Y. Bliokh, M. R. Dennis, and F. Nori, Phys. Rev. Lett. 107, 174802 (2011).
    • [35] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).
    • [36] I. Bialynicki-Birula and Z. Bialynicka-Birula, preceding Letter, Phys. Rev. Lett. 118, 114801 (2017).
    • [37] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
    • [38] A. E. Siegman, Lasers (University Science Books, Sausalito, 1986).
    • [39] S. M. Barnett, New J. Phys. 16, 093008 (2014).
    • [40] This subtlety is reminiscent of the situation that occurs for light; we can identify conserved spin and orbital parts of the total angular momentum although neither of these, due to constraints of transversality, is a true angular momentum [41-43].
    • [41] S. J. van Enk and G. Nienhuis, J. Mod. Opt. 41, 963 (1994).
    • [42] S. J. van Enk and G. Nienhuis, Europhys. Lett. 25, 497 (1994).
    • [43] S. M. Barnett, J. Mod. Opt. 57, 1339 (2010).
    • [44] We have replaced the usual radial number p by n so as to avoid possible confusion with the momentum.
    • [45] Strictly speaking, to ensure a normalizable state, we should make ψ 0 a superposition over a small range of momenta p0, but this can be an arbitrarily narrow distribution and so does not change our analysis in any essential way.
    • [46] C. W. Clark, R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushkin, Nature (London) 525, 504 (2015).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article