Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhao, Xin; Lang, Qi; Yildirimer, Lara; Lin, Zhi Yuan; Cui, Wenguo; Annabi, Nasim; Ng, Kee Woei; Dokmeci, Mehmet R.; Ghaemmaghami, Amir M.; Khademhosseini, Ali (2016)
Publisher: Wiley
Languages: English
Types: Article
Subjects: Article

Classified by OpenAIRE into

mesheuropmc: technology, industry, and agriculture, macromolecular substances, complex mixtures, integumentary system
Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In this study, a photocrosslinkable gelatin (i.e., gelatin methacrylamide (GelMA)) with tunable mechanical, degradation, and biological properties is used to engineer the epidermis for skin tissue engineering applications. The results reveal that the mechanical and degradation properties of the developed hydrogels can be readily modified by varying the hydrogel concentration, with elastic and compressive moduli tuned from a few kPa to a few hundred kPa, and the degradation times varied from a few days to several months. Additionally, hydrogels of all concentrations displayed excellent cell viability (>90%) with increasing cell adhesion and proliferation corresponding to increases in hydrogel concentrations. Furthermore, the hydrogels are found to support keratinocyte growth, differentiation, and stratification into a reconstructed multilayered epidermis with adequate barrier functions. The robust and tunable properties of GelMA hydrogels suggest that the keratinocyte laden hydrogels can be used as epidermal substitutes, wound dressings, or substrates to construct various in vitro skin models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] L. Braiman-Wiksman, I. Solomonik, R. Spira, T. Tennenbaum Toxicol. Pathol. 2007, 35, 767.
    • [2] G. D. Winter, Adv. Exp. Med. Biol. 1977, 94, 673.
    • [3] J. K. Wagner, E. J. Parra, H. L. Norton, C. Jovel, M. D. Shriver, Pigm. Cell Res. 2002, 15, 385. 20 Kamal, M. Y. Reusmaazran, M. Y. Aminuddin, B. H. Ruszymah, Biomed. Mater. Eng. 2014, 24, [21] M. K. Yeh, Y. M. Liang, K. M. Cheng, N. T. Dai, C. C. Liu, J. J. Young, Polymer 2011, 52, 996.
    • [22] J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, A. Khademhosseini, Biomaterials [23] [24] [28] J. Lam, K. Kim, S. Lu, Y. Tabata, D. W. Scott, A. G. Mikos, F. K. Kasper, J. Biomed. Mater. Res. [25] H. Shin, B. D. Olsen, A. Khademhosseini, Biomaterials 2012, 33, 3143.
    • [26] J. Salber, S. Grater, M. Harwardt, M. Hofmann, D. Klee, J. Dujic, H. Jinghuan, J. Ding, S.
    • Kippenberger, A. Bernd, J. Groll, J. P. Spatz, M. Möller, Small 2007, 3, 1023.
    • [29] S. Bourdoulous, G. Orend, D.A. MacKenna, R. Pasqualini, E. Ruoslahti. J. Cell Biol. 1998, 143, 267.
    • [30] C.S. Chen, M. Mrksich M, S. Huang, G.M. Whitesides, D.E. Ingber, Science 1997, 276,1425.
    • [31] G. Davey, M. Buzzai, R.K. Assoian, J. Cell Sci. 1999, 112, 4663.
    • [32] A. Huttenlocher, M. H. Ginsberg, A. F. Horwitz, J. Cell Biol. 1996, 134, 1551.
    • [33] S. P. Palecek, J.C. Loftus, M.H. Ginsberg, D.A. Lauffenburger, A.F. Horwitz, Nature 1997, 385, 537.
    • [34] E. Boelsma, M. C. H. Verhoeven, M. Ponec, J. Investig. Dermatol. 1999, 112, 489.
    • [35] V. M. Schoop, N. Mirancea, N. E. Fusenig, J. Investig. Dermatol. 1999, 112, 343. 22
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NIH | T cell dysregulation in Sys...
  • NIH | 3D combinatorial microenvir...
  • NIH | Microengineered Osteoinduct...
  • NIH | A Microfabrication Platform...
  • NIH | Microengineered Osteons for...
  • NSF | EFRI-BioFLEX: Tissue Engine...

Cite this article