Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Willems, B. L.; Dao-, V. H.; Vanacken, J.; Chibotaru, L. F.; Moshchalkov, V. V.; Guillamón, I.; Suderow, H.; Vieira, S.; Janssens, S. D.; Williams, Oliver Aneurin; Haenen, K.; Wagner, P. (2009)
Publisher: American Physical Society
Languages: English
Types: Review
Subjects: boron; diamond; magnetic moments; nanostructured materials; plasma CVD; scanning tunnelling microscopy; scanning tunnelling spectroscopy; superconducting energy gap; superconducting thin films, QC

Classified by OpenAIRE into

arxiv: Condensed Matter::Superconductivity
We report on low-temperature scanning tunneling microscopy/spectroscopy experiments performed on superconducting boron-doped nanocrystalline diamond (NCD) thin films prepared by chemical-vapor deposition methods. The most representative sample reveals the observed superconducting gap (Delta) highly modulated over a length scale on the order of similar to 30 nm, which is much shorter than the typical diamond grain size. The sample local and macroscopic behavior favors for the Delta modulation as being an intrinsic property of the NCD granules. On the other hand, Delta shows its temperature dependence [Delta(T)] consistent with the results obtained by Fominov and Feigel'man [Phys. Rev. B 63, 094518 (2001)], who studied theoretically the behavior of the superconducting gap of a BCS superconductor in contact with a normal layer by solving the one-dimensional Usadel equations on the superconducting side of the superconducting to normal interface. This work was supported by the Methusalem Funding by the Flemish Goverment, the European Science Foundation (ESF), NES program, the IAP-P6/42 project "Quantum Effects in Clusters and Nanowires," GOA, and FWO projects.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 M. Stoneham, Nature Mater. 3, 3 2004 .
    • 2 H. Ye, N. Tumilty, M. Bevilacqua, S. Curat, M. Nesladek, B. Bazin, P. Bergonzo, and R. B. Jackman, J. Appl. Phys. 103, 054503 2008 .
    • 3 E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel'nik, N. J. Curro, J. D. Thompson, and S. M. Stishov, Nature London 428, 542 2004 .
    • 4 K. Thonke, Semicond. Sci. Technol. 18, S20 2003 .
    • 5 T. Klein, P. Achatz, J. Kacmarcik, C. Marcenat, F. Gustafsson, J. Marcus, E. Bustarret, J. Pernot, F. Omnes, B. E. Sernelius, C. Persson, A. Ferreira da Silva, and C. Cytermann, Phys. Rev. B 75, 165313 2007 .
    • 6 W. Gajewski, P. Achatz, O. A. Williams, K. Haenen, E. Bustarret, M. Stutzmann, and J. A. Garrido, Phys. Rev. B 79, 045206 2009 .
    • 7 J. J. Mareš, P. Hubík, M. Nesládek, and J. Krištofik, Diamond Relat. Mater. 16, 921 2007 .
    • 8 Y. Takano, T. Takenouchi, S. Ishii, S. Ueda, T. Okutsu, I. Sakaguchi, H. Umezawa, H. Kawarada, and M. Tachiki, Diamond Relat. Mater. 16, 911 2007 .
    • 9 O. A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, and R. B. Jackman, Diamond Relat. Mater. 17, 1080 2008 .
    • 10 C. Wild, P. Koidl, W. Müller-Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, R. Samlenski, and R. Brenn, Diamond Relat. Mater. 2, 158 1993 ; C. Wild, R. Kohl, N. Herres, W. MüllerSebert, and P. Koidl, ibid. 3, 373 1994 .
    • 11 B. Sacepe, C. Chapelier, C. Marcenat, J. Kačmarčik, T. Klein, M. Bernard, and E. Bustarret, Phys. Rev. Lett. 96, 097006 2006 .
    • 12 E. A. Ekimov, V. A. Sidorov, A. V. Zoteev, J. B. Lebed, J. D. Thompson, and S. M. Stishov, Sci. Technol. Adv. Mater. 9, 044210 2008 .
    • 13 I. B. Altfeder, J. J. Hu, A. A. Voevodin, and J. Krim, Phys. Rev. Lett. 102, 136104 2009 .
    • 14 A. D. Truscott, R. C. Dynes, and L. F. Schneemeyer, Phys. Rev. Lett. 83, 1014 1999 .
    • 15 M. Vinet, C. Chapelier, and F. Lefloch, Phys. Rev. B 63, 165420 2001 .
    • 16 W. Escoffier, C. Chapelier, N. Hadacek, and J.-C. Villégier, Phys. Rev. Lett. 93, 217005 2004 .
    • 17 Ya. V. Fominov and M. V. Feigel'man, Phys. Rev. B 63, 094518 2001 .
    • 18 O. A. Williams, O. Douhéret, M. Daenen, K. Haenen, E. Osawa, and M. Takahashi, Chem. Phys. Lett. 445, 255 2007 .
    • 19 K. K. Likharev, Dynamics of Josephson Junctions and Circuits Gordon and Breach Science, France, 1984 .
    • 20 I. Guillamón, H. Suderow, F. Guinea, and S. Vieira, Phys. Rev. B 77, 134505 2008 .
    • 21 G. Rubio-Bollinger, H. Suderow, and S. Vieira, Phys. Rev. Lett. 86, 5582 2001 .
    • 22 The STM and STS data were analyzed by using the WSxM 4.0 Develop 12.1-image browser software by I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 2007 .
    • 23 C. A. M. dos Santos, C. J. V. Oliveira, M. S. da Luz, A. D. Bortolozo, M. J. R. Sandim, and A. J. S. Machado, Phys. Rev. B 74, 184526 2006 .
    • 24 B. L. Willems, G. Zhang, J. Vanacken, V. V. Moshchalkov, S. D. Janssens, O. A. Williams, K. Haenen, and P. Wagner, J. Appl. Phys. 106, 033711 2009 .
    • 25 Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Rev. Mod. Phys. 79, 353 2007 .
    • 26 O. A. Williams and M. Nesládek, Phys. Status Solidi A 203, 3375 2006 .
    • 27 P. G. de Gennes, Rev. Mod. Phys. 36, 225 1964 .
    • 28 T. Nishizaki, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada, and N. Kobayashi, J. Phys. Chem. Solids 69, 3027 2008 .
    • 29 K. M. Lang, V. Madhavan, J. E. Hoffman, E. W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis, Nature London 415, 412 2002 .
    • 30 J. E. Hoffman, K. McElroy, D.-H. Lee, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Science 297, 1148 2002 .
    • 31 K. McElroy, R. W. Simmonds, J. E. Hoffman, D.-H. Lee, J. Orenstein, H. Eisaki, S. Uchida, and J. C. Davis, Nature London 422, 592 2003 .
    • 32 K.-W. Lee and W. E. Pickett, Phys. Rev. Lett. 93, 237003 2004 .
    • 33 T. Yokoya, T. Nakamura, T. Matsushita, T. Muro, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada, and T. Oguchi, Nature London 438, 647 2005 .
    • 34 M. Cardona, Sci. Technol. Adv. Mater. 7, S60 2006 .
    • 35 K. D. Usadel, Phys. Rev. Lett. 25, 507 1970 ; W. Belzig, F. Wilhelm, C. Bruder, G. Schön, and A. D. Zaikin, Superlattices Microstruct. 25, 1251 1999 .
    • 36 The condition of zero derivative corresponds to an insulating boundary. It happens that the same set of equations also describe a periodic system of alternating S and N layers of respective thickness 2LS and 2LN.
    • 37 J. J. Lin and J. P. Bird, J. Phys.: Condens. Matter 14, R501 2002 .
    • 38 P. Martìnez-Samper, H. Suderow, S. Vieira, J. P. Brison, N. Luchier, P. Lejay, and P. C. Canfield, Phys. Rev. B 67, 014526 2003 .
    • 39 E. Bustarret, J. Kačmarčik, C. Marcenat, E. Gheeraert, C. Cytermann, J. Marcus, and T. Klein, Phys. Rev. Lett. 93, 237005 2004 .
    • 40 W. H. Li, C. C. Yang, F. C. Tsao, and K. C. Lee, Phys. Rev. B 68, 184507 2003 .
    • 41 A. M. Clogston, Phys. Rev. Lett. 9, 266 1962 .
    • 42 J. Von Delft and D. C. Ralph, Phys. Rep. 345, 61 2001 .
    • 43 In fact, highly dispersive bands have been showed to approach each other at the Fermi level in heavily boron-doped diamond Ref. 33 with the values for their kF equal to kA = −1.5 nm−1, F kB = 1.1 nm−1, and kFC = 2.7 nm−1. For simplicity, the estimation F of Horb has been done by using the free-electron approximation for the k space of the boron-doped diamond.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article