LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Khalid, Noteila M; Aboud, Marium A; Alrabba, Fathi M; Elnaiem, Dia-Eldin A; Tripet, Frederic (2012)
Publisher: BioMed Central
Journal: Parasites & Vectors
Languages: English
Types: Article
Subjects: Gene flow, Phlebotomus papatasi, RC109-216, Sudan, QH, Infectious and parasitic diseases, Genetic differentiation, Phlebotomus papatasi, Research

Abstract

Background

Cutaneous Leishmaniasis (CL) is endemic in Sudan. It is caused by Leishmania major parasites and transmitted by Phlebotomus papatasi sandflies. Recently, uncommon clinical manifestations of CL have been reported. Moreover, L. donovani parasites that cause Visceral Leishmaniasis (VL) have been isolated from CL lesions of some patients who contracted the disease in Khartoum State, Central Sudan with no history of travelling to VL endemic sites on south-eastern Sudan. Because different clinical manifestations and the parasite behaviour could be related to genetic differentiation, or even sub-structuring within sandfly vector populations, a population genetic study was conducted on P. papatasi populations collected from different localities in Khartoum State known for their uncommon CL cases and characterized by contrasting environmental conditions.

Methods

A set of seven microsatellite loci was used to investigate the population structure of P. papatasi samples collected from different localities in Khartoum State, Central Sudan. Populations from Kassala State, Eastern Sudan and Egypt were also included in the analyses as outgroups. The level of genetic diversity and genetic differentiation among natural populations of P. papatasi was determined using FST statistics and Bayesian assignments.

Results

Genetic analyses revealed significant genetic differentiation (FST) between the Sudanese and the Egyptian populations. Within the Sudanese P. papatasi populations, one population from Gerif West, Khartoum State, exhibited significant genetic differentiation from all other populations including those collected as near as 22 km.

Conclusion

The significant genetic differentiation of Gerif West P. papatasi population from other Sudanese populations may have important implication for the epidemiology of leishmaniasis in Khartoum State and needs to be further investigated. Primarily, it could be linked to the unique location of Gerif West which is confined by the River Nile and its tributaries that may act as a natural barrier for gene flow between this site and the other rural sites. The observed high migration rates and lack of genetic differentiation among the other P. papatasi populations could be attributed to the continuous human and cattle movement between these localities.

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Killick-Kendrick R: The biology and control of phlebotomine sand flies. Clin Dermatol 1999, 17:279-289.
    • 2. World Health Organization (WHO): Disease watch focus: leishmaniasis. TDR | Nature Reviews Microbiology 2004, 2:692-693.
    • 3. Herwaldt BL: Leishmaniasis. Lancet 1999, 354:1191-1199.
    • 4. El-Hassan AM, Zijlstra EE: Leishmaniasis in sudan. Visceral leishmaniasis. Trans R Soc Trop Med Hyg 2001, 95(suppl 1):27-58.
    • 5. Oumeish OY: Cutaneous leishmaniasis: a historical perspective. Clin Dermatol 1999, 17:249-254.
    • 6. Ashford RW: Cutaneous leishmaniasis: strategies for prevention. Clin Dermatol 1999, 17:327-332.
    • 7. Lewis DJ: A taxonomic review of the genus phlebotomus (diptera: psychodidae). Bull Br Mus (Nat Hist) (Entomol) 1982, 45:121-209.
    • 8. Ghosh KN, Mukhopadhyay JM, Guzman H, Tesh RB, Munstermann LE: Interspecific hybridization and genetic variability of phlebotomus sandflies. Med Vet Entomol 1999, 13:78-88.
    • 9. Ready PD: Should sand fly taxonomy predict vectorial and ecological traits? J Vec Ecol 2011, 36:S17-S22.
    • 10. Hanafi HA, El Sawaf BM, Fryauff DJ, Beavers GM, Tetreault GE: Susceptibility to leishmania major of different populations of phlebotomus papatasi (diptera:psychodidae:) from endemic and non-endemic regions of Egypt. Ann Trop Med Parasitol 1998, 92:57-64.
    • 11. Lanzaro GC, Warburg A: Genetic variability in phlebotomine sandflies: possible implications for leishmaniasis epidemiology. Parasitol Today 1995, 11:151-154.
    • 12. Boussaa S, Perrotey S, Boumezzough A, Harrak R, Hilali S, Pesson B: Isoenzymatic characterization of phlebotomus papatasi (diptera: psychodidae) of the Marrakech area, Morocco. J Med Entomol 2009, 45:370-374.
    • 13. Hamarsheh O, Presber W, Abdeen Z, Sawalha S, Al-Lahem A, Schönian G: Genetic structure of mediterranean populations of the sandfly Phlebotomus papatasi by mitochondrial cytochrome b haplotype analysis. Med Vet Entomol 2007, 21:270-277.
    • 14. Depaquit J, Lienard E, Verzeaux-Griffon A, Ferté H, Bounamous A, Gantier J-C, Hanafi HA, Jacobson RL, Maroli M, Moin-Vaziri V, et al: Molecular homogeneity in diverse geographical populations of Phlebotomus papatasi (diptera: psychodidae) inferred from ND4 mtDNA and ITS2 rDNA: epidemiological consequences. Infect Genet Evol 2008, 8:159-170.
    • 15. Hamarsheh O, Presber W, Yaghoobi-Ershadi MR, Amro A, Al-Jawabreh A, Sawalha S, Al-Lahem A, Das ML, Guernaoui S, Seridi N, et al: Population structure and geographical subdivision of the Leishmania major vector Phlebotomus papatasi as revealed by microsatellite variation. Med Vet Entomol 2009, 23:69-77.
    • 16. Schmidt ML, Schmidt JR: A morphological study of Phlebotomus papatasi from Egypt (diptera: psychodidae). Ann Entomol Soc Am 1963, 56:567-573.
    • 17. Kassem H, Fryauff DJ, El Sawaf BM, Shehata MG, Shoumar NF: Electrophoretic comparison of the leishmania vectors Phlebotomus papatasi and P. Langeroni (diptera: psychodidae). J Med Entomol 1990, 4:592-601.
    • 18. Kassem H, Fryauff DJ, Shehata MG: Enzyme polymorphism and genetic variability of one colonized and several field populations of Phlebotomus papatasi (diptera: psychodidae). J Med Entomol 1993, 30:407-413.
    • 19. Krzywinski J, Besansky NJ: Molecular systematics of anopheles: from subgenera to subpopulations. Annu Rev Entomol 2003, 48:111-139.
    • 20. Kirk R, Lewis DJ: Studies in leishmaniasis in the Anglo-Egyptian Sudan. XI. Phlebotomus in relation to leishmaniasis in the Sudan. Trans R Soc Trop Med Hyg 1955, 49:229-240.
    • 21. El-Safi SH, Peters W: Studies on leishmaniasis in Sudan. Epidemic of cutaneous leishmaniasis in Khartoum. Trans R Soc Trop Med Hyg 1991, 85:44-47.
    • 22. El-Hassan AM, Zijlstra EE: Leishmaniasis in Sudan. Cutaneous leishmaniasis. Trans R Soc Trop Med Hyg 2001, 95:1-17.
    • 23. Seaman J, Mercer AJ, Sondorp E: The epidemic of visceral leishmaniasis in western Upper Nile, southern Sudan: course and impact from 1984 to 1994. Int J Epidemiol 1996, 25:862-871.
    • 24. Kolaczinski JH, Hope A, Ruiz JA, Rumunu J, Richer M, Seaman J: Kala-azar epidemiology and control, southern Sudan. Emerg Infect Dis 2008, 14:664-666.
    • 25. Elamin EM, Guerbouj S, Musa AM, Guizani I, Khalil EAG, Mukhtar MM, Elkadaro AMY, Mohamed HS, Ibrahim ME, Abdel Hamid MM, et al: Uncommon clinical presentations of cutaneous leishmaniasis in Sudan. Trans R Soc Trop Med Hyg 2005, 99:803-808.
    • 26. Elamin EM, Guizani I, Guerbouj S, Gramiccia M, El Hassan AM, Di Muccio T, Taha MA, Mukhtar MM: Identification of Leishmania donovani as a cause of cutaneous leishmaniasis in Sudan. Trans R Soc Trop Med Hyg 2008, 102:54-57.
    • 27. Ravel C, Cortes S, Pratlong F, Morio F, Dedet J-P, Campino L: First report of genetic hybrids between two very divergent leishmania species: Leishmania infantum and Leishmania major. Int J Parasitol 2006, 36:1383-1388.
    • 28. Lukes J, Mauricio IL, Schönian G, Dujardin J-C, Soteriadou K, Dedet J-P, Kuhls K, Tintaya KWQ, Jirku M, Chocholova E, et al: Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. PNAS 2007, 104:9375-9380.
    • 29. Hamad SH, Musa AM, Khalil EAG, Abebe T, Younis BM, Elthair MEE, EL-Hassan AM, Hailu A, Bart A: Leishmania: probable genetic hybrids between species in Sudanese isolates. J Microbiol Antimicrob 2011, 3:142-145.
    • 30. Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, Lawyer P, Dobson DE, Beverley SM, Sacks DL: Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 2009, 324:265-268.
    • 31. Al-Jawabreh A, Diezmann S, Müller M, Wirth T, Schnur LF, Strelkova MV, Kovalenko DA, Razakov SA, Schwenkenbecher J, Kuhls K, Schönian G: Identification of geographically distributed sub-populations of Leishmania (Leishmania) major by microsatellite analysis. BMC Evol Biol 2008, 8:183.
    • 32. Hamarsheh O, Presber W, Abdeen Z, Sawalha S, AL-Lahem A, Schönian G: Isolation and characterization of microsatellite loci in the sand fly Phlebotomus papatasi (diptera: psychodidae). Mol Ecol Notes 2006, 6:826-828.
    • 33. Aransay AM, Malarky G, Ready PD: Isolation (with enrichment) and characterization of trinucleotide microsatellites from Phlebotomus perniciosus, a vector of Leishmania infantum. Mol Ecol Notes 2001, 1:176-178.
    • 34. Khalid N, Elnaiem D, Aboud M, Al Rabba F, Tripet F: Morphometric and molecular differentiation of Phlebotomus (Phlebotomus) sandflies. Med Vet Entomol 2010, 24:352-360.
    • 35. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P: Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 2004, 4:535-538.
    • 36. Excoffier L, Laval G, Schneider S: ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 2005, 1:47-50.
    • 37. Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
    • 38. Hedrick PW: Genetics of populations. 3rd edition.: Jones and Bartlett; 2005.
    • 39. Conn JE, Mirabello L: The biogeography and population genetics of neotropical vector species. Heredity 2007, 99:245-256.
    • 40. Day JC, Ready PD: Relative abundance, isolation and structure of phlebotomine microsatellites. Insect Mol Biol 1999, 8:575-580.
    • 41. Selkoe KA, Toonen RJ: Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 2006, 9:615-629.
    • 42. Aransay AM, Ready PD, Morillas-Marquez F: Population differentiation of Phlebotomus perniciosus in Spain following postglacial dispersal. Heredity 2003, 90:316-325.
    • 43. Mahnaz T, Katrin K, Amer A-J, Isabel M, Gabriele S, Safar F, Hossein AM: Leishmania major: genetic heterogeneity of Iranian isolates by singlestrand conformation polymorphism and sequence analysis of ribosomal DNA internal transcribed spacer. Acta Trop 2006, 98:52-58.
    • 44. Hamarsheh O: Distribution of Leishmania major zymodemes in relation to populations of Phlebotomus papatasi sand flies. Parasit Vectors 2011, 4:9.
    • 45. François B, Nicolas L-M: The estimation of population differentiation with microsatellite markers. Mol Ecol 2002, 11:155-165.
    • 46. Yuval B, Warburg A, Sleinch Y: Leishmaniasis in the Jordan valley. Dispersal characteristics of the sandfly Phlebotomus papatasi. Med Vet Entomol 1988, 2:391-395.
    • 47. Tesh RB, Guzman H: Sand flies and the agents they transmit. In The Biology of Disease Vectors. Edited by Beaty BJ, Marquardt WC. Niwot, Colorado, USA: University Press of Colorado; 1996:117-127.
    • 48. Teklu T, Braun JV, Zaki E, Ali A: Drought and famine relationships in Sudan: policy implications, Research reports No. 88. Washington, D.C, USA: International Food Policy Research Institute (IFPRI); 1991:140.
    • 49. Abu Sin A, Abbakar AM: Kassala: The bridging state of eastern Sudan. In Peace in eastern Sudan. Norway: BRIC; 2009.
    • 50. Alhassan SA: Transformation in rural economic system in dry land areas of central Sudan, MA dissertation.: University of Khartoum, Faculty of Art, Department of Geography; 2003.
    • 51. Seid-Ahmed SA: Agriculture and globalization challenges. Strategic Studies Series. Khartoum, Sudan: Centre of Strategic Studies; 1999. in Arabic.
    • 52. Ibrahim AA, Dawoud HA: National perspective and strategic interventions for the impact of desertification on gender immigration from western states of sudan. Strategic and National Security 2008, 1:1-28.
    • 53. Elnaiem DA: Studies on sandflies in active focus of cutaneous leishmaniasis, at Wad Elzaki and Elhashaba,White Nile province, Sudan, M.Sc dissertation. Khartoum, Sudan: University of Khartoum, Faculty of Science, Department of Zoology; 1986.
    • 54. Wasserberg G, Yarom I, Warburgy A: Seasonal abundance patterns of the sandfly Phlebotomus papatasi in climatically distinct foci of cutaneous leishmaniasis in Israeli deserts. Med Vet Entomol 2003, 17:452-456.
    • 55. Chelbi I, Kaabi B, Bijaoui M, Derbali M, Zhioua E: Spatial correlation between Phlebotomus papatasi scopoli (dipteral: psyehodidae) and incidence of zoonotie cutaneous leishmaniasis in Tunisia. J Med Entomol 2009, 46:400-402.
    • 56. Esseghir S, Ready PD, Killick-Kendrick R, Ben-Ismail R: Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major. Insect Mol Biol 1997, 6:211-225.
    • 57. Parvizi P, Ready PD: Molecular investigation of the population differentiation of Phlebotomus papatasi, important vector of Leishmania major, in different habitats and regions of Iran. Iran Biomed J 2006, 10:69-77.
    • 58. Rocha LDS, Falqueto A, Santos CBD, Grimaldi G, Cupolillo E: Genetic structure of Lutzomyia (nyssomyia) intermedia populations from two ecologic regions in Brazil where transmission of Leishmania (viannia) braziliensis reflects distinct eco-epidemiologic features. AmJTrop Med Hyg 2007, 76:559-565.
    • 59. Numairy MS: Genetic diversity and population structure of Phlebotomus oreintalis (diptera: psychodidae) from selected regions in Sudan. M.Sc thesis. Khartoum, Sudan: University of Khartoum, Factulty of Science, Department of Zoology; 2009.
    • 60. Mukhopadhyay JEF, Rangel K, Ghosh K, Munstermann LE: Patterns of genetic variability in colonized strains of Lutzomyia longipalpis (diptera: psychodidae) and its consequences. AmJTrop Med Hyg 1997, 57:216-221.
    • 61. Volf P, Volfova V: Establishment and maintenance of sandfly colonies. J Vec Ecol 2011, 36:S1-S9.
    • 62. Kassem HA, Fryauff DJ, Hanafi HA: Enzyme polymorphism and genetic variability of laboratory populations of Phlebotomus papatasi, P. bergeroti, P. langeroni, and P. perniciosus. J Egypt Soc Parasitol 1999, 29:459-472.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article