LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Oates, A.; Cabrera-Espana, F.; Agrawal, A.; Reehal, H. S. (2014)
Publisher: Maney Publishing
Languages: English
Types: Article
Subjects: TA
Arrays of vertical silicon micropillar radial junction solar cells have been fabricated by diffusion of direct application spin on dopant and from the vapour phase through proximity rapid thermal diffusion. The micropillars were fabricated by optical lithography and deep reactive ion etching. The micropillar arrays show superior antireflective properties over the measured spectrum and good correlation to finite difference time domain modelling of identical geometry arrays. Junctions formed by a conventional spin on doping process of phosphorus containing dopant solution produced Suns-Voc values in the region of 0.3 V. This value is likely due to difficulties encountered in achieving an even distribution of dopant over the entire surface of the arrays. An alternative method utilising spin on dopant but employing an intermediate vapour phase diffusion step produced promising results with Suns-Voc values reaching 0.5 V following a post-diffusion drive-in step.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. C. Lin and M. Povinelli: 'Optical absorption enhancement in silicon nanowire arrays with large lattice constant for photovoltaic applications', Opt. Express, 2009, 17, (22), 19371-19381.
    • 2. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis and H. A. Atwater: 'Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications', Nat. Mater., 2010, 9, 239-244.
    • 3. B. M. Kayes, N. S. Lewis and H. A. Atwater: 'Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells', J. Appl. Phys., 2005, 97, (11), 114302.
    • 4. J-Y. Jung, H-D. Um, S-W, Jee, K-T. Park, J H Bang and J-H Lee: 'Optimal design for antireflective Si nanowire solar cells', Sol. Energ. Mat. Sol. Cells., 2013, 112, 84-90.
    • 5. H. Bao and X. Ruan: 'Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications', Opt. Lett., 2010, 35, (20), 3378-3380.
    • 6. N. Lagos, M.M. Sigalas and D. Niarchos: 'The optical absorption of nanowire arrays', Phot. Nano. Fund. Appl., 2011, 9, 163-167.
    • 7. L. Hu and G. Chen: 'Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications', Nano. Lett., 2007 7, (11), 3249-3252.
    • 8. J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G-Q. Lo, and D-L. Kwong: 'Design guidelines of periodic Si nanowire arrays for solar cell application', Appl. Phys. Lett., 2009, 95, 243113.
    • 9. J. Kupec, R. L. Stoop, and B. Witzigmann: 'Light absorption and emission in nanowire array solar cells', Opt. Express, 2010, 18, (26), 27589-27605.
    • 10.Z. Duan, M. Li, T. Mwenya, F. Bai, Y. Li and D. Song: 'Geometric parameter optimization to minimise the light-reflection losses of regular vertical silicon nanorod arrays used for solar cells', Phys. Status Solidi a, 2014, DOI 10.1002/pssa.201431189.
    • 11.F. Toor, H.M. Branz, M.R. Page, K.M. Jones and H-C. Yuan: 'Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells', Appl. Phys. Lett., 2011, 99, 103501.
    • 12.H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu and T. Ye: 'Influence of nanowires length on performance of crystalline silicon solar cell', Appl. Phys. Lett., 2011, 98, 151116.
    • 13.Z. Li, J. Wang, N Singh and S. Lee: 'Optical and electrical study of coreshell silicon nanowires for solar applications', Opt. Express, 2011, 19, (S5), A1057-A1066.
    • 14.M. Gharghi, E. Fathi, B. Kante, S. Sivoththaman and X. Zhang: 'Heterojunction silicon microwire solar cells', Nano Lett., 2012, 12, (12), 6278-6282.
    • 15.H. Kim, J. Kim, E. Lee, D-W. Kim, J-H. Yun and J. Yi: 'Effect of the short collection length in silicon microscal wire solar cells', Appl. Phys. Lett., 2013, 102, 193904.
    • 16.R. A. Sinton, A. Cuevas and M. Stuckings: 'Quasi-steady-state photoconductance, a new method for solar cell material and device characterisation', Proc. of the 25th Photovoltaic Specialists Conference, Washington, D.C., USA, May 1996, 457-460.
    • 17.K. Yee: 'Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media', IEEE Trans. Antennas Propagat., 1966, 14, (5) 302-307.
    • 18.J. Berenger: 'A Perfectly Matched Layer for the Absorption of Electromagnetic Waves', J. Comput. Phys., 1994, 114, 185-200.
    • 19.J. Li, H. Yu and Y. Li: 'Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics', Nanotechnology, 2012, 23, (19).
    • 20.W. Zagozdzon-Wosik, J. C. Wolfe and C. W. Teng: 'Doping of trench capacitors by rapid thermal diffusion', IEEE Trans. Electron Device Lett., 1991, 12, (6), 264-266.
    • 21.J. R. Flemish, R. E. Tressler and J. Ruzyllo, 'Phosphorus diffusion in silicon from enclosed solid planar sources', J. Electrochem. Soc., 1991, 138, 205-207.
    • 22.R. A. Sinton and A. Cuevas: 'A quasi-steady-state open-circuit voltage method for solar cell characterization', Proc. of the 16th European Photovoltaic Solar Energy Conference, Glasgow, UK, May 2000, 1152- 1155.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Download from

Cite this article