LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Learmonth, Gemma; Thut, Gregor; Benwell, Christopher S.Y.; Harvey, Monika (2015)
Publisher: Elsevier BV
Journal: Neuropsychologia
Languages: English
Types: Article
Subjects: Experimental and Cognitive Psychology, Behavioral Neuroscience, Cognitive Neuroscience

Classified by OpenAIRE into

mesheuropmc: genetic structures
Young adults typically display a processing advantage towards the left side of space (“pseudoneglect”), possibly as a result of right parietal dominance for spatial attention. This bias is ameliorated with age, with older adults displaying either no strongly lateralised bias, or a slight bias towards the right. This may represent an age-related reduction of right hemispheric dominance and/or increased left hemispheric involvement. Here, we applied anodal transcranial direct current stimulation (atDCS) to the right posterior parietal cortex (PPC; R-atDCS), the left PPC (L-atDCS) and a Sham protocol in young and older adults during a titrated lateralised visual detection task. We aimed to facilitate visual detection sensitivity in the contralateral visual field with both R-atDCS and L-atDCS relative to Sham. We found no differences in the effects of stimulation between young and older adults. Instead the effects of atDCS were state-dependent (i.e. related to task performance at baseline). Relative to Sham, poor task performers were impaired in both visual fields by anodal stimulation of the left posterior parietal cortex (PPC). Conversely, good performers maintained sensitivity in both visual fields in response to R-atDCS, although this effect was small. We highlight the importance of considering baseline task ability when designing tDCS experiments, particularly in older adults.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Antal, A., Terney, D., Poreisz, C., Paulus, W., 2007. Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. Eur. J. Neurosci. 26 (9), 2687-2691. http://dx.doi.org/10.1111/j.1460-9568.2007.05896.x.
    • Bäckman, L., Almkvist, O., Andersson, J., Nordberg, A., Winblad, B., Reineck, R., 1997. Brain activation in young and older adults during implicit and explicit retrieval. J. Cogn. Neurosci. 9, 378-391. http://dx.doi.org/10.1162/jocn.1997.9.3.378.
    • Benwell, C.S.Y., Learmonth, G., Miniussi, C., Harvey, M., Thut, G., 2015. State-dependency in transcranial direct current stimulation: a role for stochastic resonance? Cortex (submitted for publication).
    • Benwell, C.S.Y., Harvey, M., Gardner, S., Thut, G., 2013a. Stimulus- and state-dependence of systematic bias in spatial attention: additive effects of stimulussize and time-on-task. Cortex 49 (3), 827-836. http://dx.doi.org/10.1016/j. cortex.2011.12.007.
    • Benwell, C.S.Y., Learmonth, G., Thut, G., Harvey, M., 2013b. Spatial attention: differential shifts in pseudoneglect direction with time-on-task and initial bias support the idea of observer subtypes. Neuropsychologia 51, 2747-2756. http: //dx.doi.org/10.1016/j.neuropsychologia.2013.09.030.
    • Benwell, C.S.Y., Thut, G., Grant, A., Harvey, M., 2014. A rightward shift in the visuospatial attention vector with healthy aging. Front. Aging Neurosci. 6 (113), 1-11. http://dx.doi.org/10.3389/fnagi.2014.00113.
    • Berryhill, M.E., Jones, K.T., 2012. tDCS selectively improves working memory in older adults with more education. Neurosci. Lett. 521 (2), 148-151. http://dx. doi.org/10.1016/j.neulet.2012.05.074.
    • Bisiach, E., Vallar, G., 2000. Unilateral neglect in humans. In: Boller, F., Grafman, J., Rizzolatti, G. (Eds.), Handbook of Neuropsychology, 2nd ed. Elsevier Science, Amsterdam.
    • Borgo, M., Soranzo, A., Grassi, M., 2012. MATLAB for Psychologists. Springer, New York.
    • Bowers, D., Heilman, K.M., 1980. Pseudoneglect: effects of hemispace on a tactile line bisection task. Neuropsychologia 18 (4-5), 491-498. http://dx.doi.org/ 10.1016/0028-3932(80)90151-7.
    • Bradshaw, J.L., Bradshaw, J.A., Nathan, G., Nettleton, N.C., Wilson, L.E., 1986. Leftward error in bisecting the gap between two points: Stimulus quality and hand effects. Neuropsychologia 24, 849-855. http://dx.doi.org/10.1016/0028-3932 (86)90084-9.
    • Brown, J.W., Jaffe, J., 1975. Hypothesis on cerebral dominance. Neuropsychologia 13, 107-110. http://dx.doi.org/10.1016/0028-3932(75)90054-8.
    • Brunoni, A.R., Amadera, J., Berbel, B., Volz, M.S., Rizzerio, B.G., Fregni, F., 2011. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int. J. Neuropsychopharmacol. 14, 1133-1145. http://dx.doi.org/10.1017/S1461145710001690.
    • Cabeza, R., 2002. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol. Aging 17, 85-100. http://dx.doi.org/10.1037/0882-7974.17.1.85.
    • Cabeza, R., Anderson, N.D., Locantore, J.K., McIntosh, A.R., 2002. Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage 17, 1394-1402. http://dx.doi.org/10.1006/nimg.2002.1280.
    • Cabeza, R., Daselaar, S.M., Dolcos, F., Prince, S.E., Budde, M., Nyberg, L., 2004. Taskindependent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb. Cortex 14, 364-375. http://dx.doi.org/10.1093/cercor/bhg133.
    • Cabeza, R., Grady, C.L., Nyberg, L., McIntosh, A.R., Tulving, E., Kapur, S., Jennings, J. M., Houle, S., Craik, F.I.M., 1997. Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J. Neurosci. 17, 391-400.
    • Chen, J., Niemeier, M., 2014. Distractor removal amplifies spatial frequency-specific crossover of the attentional bias: a psychophysical and Monte Carlo simulation study. Exp. Brain Res. 9. http://dx.doi.org/10.1007/s00221-014-4082-y (Epub).
    • Chiandetti, C., Galliussi, J., Andrew, R.J., Vallortigara, G., 2013. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates. Sci. Rep. 3 (2701), 1-6. http://dx.doi.org/10.1038/ srep02701.
    • Chiandetti, C., Pecchia, T., Patt, F., Vallortigara, G., 2014. Visual hierarchical processing and lateralization of cognitive functions through domestic chicks' eyes. PLOS One 9 (1), 1-5. http://dx.doi.org/10.1371/journal.pone.0084435.
    • Cohen Kadosh, R., Iuculano, T., Kanai, R., Walsh, V., 2010. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr. Biol. 20 (22), 2016-2020. http://dx.doi.org/10.1016/j.cub.2010.10.007.
    • Collins, K., Mohr, C., 2013. Performance of younger and older adults in lateralised right and left hemisphere asymmetry tasks supports the HAROLD model. Laterality 18, 491-512. http://dx.doi.org/10.1080/1357650X.2012.724072.
    • Craik, F.I.M., 1994. Memory changes in normal aging. Curr. Dir. Psychol. Sci. 3 (5), 155-158. http://dx.doi.org/10.1111/1467-8721.ep10770653.
    • Davis, S.W., Dennis, N.A., Daselaar, S.M., Fleck, M.S., Cabeza, R., 2008. Qué PASA? The posterior-anterior shift in aging. Cereb. Cortex 18 (5), 1201-1209. http: //dx.doi.org/10.1093/cercor/bhm155.
    • Deary, I.J., Johnson, W., Starr, J.M., 2010. Are processing speed tasks biomarkers of cognitive aging? Psychol. Aging 25 (1), 219-228. http://dx.doi.org/10.1037/ a0017750.
    • Dempster, F.N., 1992. The rise and fall of the inhibitory mechanism: toward a unified theory of cognitive development and aging. Dev. Rev. 12, 45-75. http: //dx.doi.org/10.1016/0273-2297(92)90003-K.
    • Depp, C.A., Jeste, D.V., 2006. Definitions and predictors of successful aging: a comprehensive review of larger quantitative studies. Am. J. Geriatr. Psychiatry 14 (1), 6-20. http://dx.doi.org/10.1097/01.JGP.0000192501.03069.bc.
    • Diekamp, B., Regolin, L., Vallortigara, G., Güntürkün, O., 2005. Avian neuropsychology: left-sided visuospatial bias in birds parallels the human condition. Curr. Biol. 15, 372-373. http://dx.doi.org/10.1016/j.cub.2005.05.017.
    • Dockery, C.A., Hueckel-Weng, R., Birbaumer, N., Plewnia, C., 2009. Enhancement of planning ability by transcranial direct current stimulation. J. Neurosci. 29 (22), 7271-7277. http://dx.doi.org/10.1523/JNEUROSCI.0065-09.2009.
    • Dolcos, F., Rice, H.J., Cabeza, R., 2002. Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction. Neurosci. Biobehav. Rev. 26, 819-825. http://dx.doi.org/10.1016/S0149-7634(02)00068-4.
    • Esposito, G., Kirby, G.S., Van Horn, J.D., Ellmore, T.M., Faith Berman, K., 1999. Context-dependent, neural system-specific neurophysical concomitants of aging: mapping PET correlates during cognitive activation. Brain 122, 963-979. http: //dx.doi.org/10.1093/brain/122.5.963.
    • Failla, C.V., Sheppard, D.M., Bradshaw, J.L., 2003. Age and responding-hand related changes in performance of neurologically normal subjects on the line-bisection and chimeric-faces tasks. Brain Cognit. 52, 353-363. http://dx.doi.org/10.1016/ S0278-2626(03)00181-7.
    • Fertonani, A., Brambilla, M., Cotelli, M., Miniussi, C., 2014. The timing of cognitive plasticity in physiological aging: a tDCS study of naming. Front. Aging Neurosci. 6 (131), 1-9. http://dx.doi.org/10.3389/fnagi.2014.00131.
    • Fjell, A.M., Walhovd, K.B., 2010. Structural brain changes in aging: courses, causes and cognitive consequences. Rev. Neurosci. 21, 187-221. http://dx.doi.org/ 10.1515/REVNEURO.2010.21.3.187.
    • Flöel, A., Suttorp, W., Kohl, O., Kürten, J., Lohmann, H., Breitenstein, C., Knecht, S., 2012. Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol. Aging 33, 1682-1689. http://dx.doi.org/10.1016/j. neurobiolaging.2011.05.007.
    • Fregni, F., Boggio, P.S., Mansur, C.G., Wagner, T., Ferreira, M.J., Lima, M.C., Rigonatti, S.P., Marcolin, M.A., Freedman, S.D., Nitsche, M.A., Pascual-Leone, A., 2005. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 16 (14), 1551-1555. http://dx.doi.org/10.1097/01. wnr.0000177010.44602.5e.
    • Fricke, K., Seeber, A.A., Thirugnanasambandam, N., Paulus, W., Nitsche, M.A., Rothwell, J., 2011. Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 105 (3), 1141-1149. http://dx.doi.org/10.1152/ jn.00608.2009.
    • Fujii, T., Fukatsu, R., Yamadori, A., Kimura, I., 1995. Effect of age on the line bisection test. J. Clin. Exp. Neuropsychol. 17 (6), 941-944. http://dx.doi.org/10.1080/ 01688639508402443.
    • Fujiyama, H., Hyde, J., Hinder, M.R., Kim, S.J., McCormack, G.H., Vickers, J.C., Summers, J.J., 2014. Delayed plastic responses to anodal tDCS in older adults. Front. Aging Neurosci. 6, 1-9. http://dx.doi.org/10.3389/fnagi.2014.00115.
    • Fukatsu, R., Fujii, T., Kimura, I., Saso, S., Kogure, K., 1990. Effects of hand and spatial conditions on visual line bisection. Tokohu J. Exp. Med. 161, 329-333. http://dx. doi.org/10.1620/tjem.161.329.
    • Gandiga, P.C., Hummel., F.C., Cohen, L.G., 2006. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 117, 845-850. http://dx.doi.org/10.1016/j. clinph.2005.12.003.
    • Goldstein, G., Shelly, C., 1981. Does the right hemisphere age more rapidly than the left? J. Clin. Neuropsychol. 3, 65-78. http://dx.doi.org/10.1080/ 01688638108403114.
    • Grady, C.L., Bernstein, L.J., Beig, S., Siegenthaler, A.L., 2002. The effects of encoding task on age-related differences in the functional neuroanatomy of face memory. Psychol. Aging 17, 7-23. http://dx.doi.org/10.1037//0882-7974.17.1.7.
    • Grady, C.L., Maisog, J.M., Horwitz, B., Ungerleider, L.G., Mentis, M.J., Salerno, J.A., Pietrini, P., Wagner, E., Haxby, J.V., 1994. Age-related changes in cortical blood flow activation during visual processing of faces and location. J. Neurosci. 14, 1450-1462.
    • Grady, C.L., Protzner, A.B., Kovacevic, N., Strother, S.C., Afshin-Pour, B., Wojtowicz, M., Anderson, J.A.E., Churchill, N., McIntosh, A.R., 2010. A multivariate analysis of age-related differences in default mode and task positive networks across multiple cognitive domains. Cereb. Cortex 20 (6), 1432-1447. http://dx.doi.org/ 10.1093/cercor/bhp207.
    • Green, D.M., Swets, J.A., 1966. Signal Detection Theory and Psychophysics. Wiley, New York.
    • Hasher, L., Zacks, R.T., May, C.P., 1999. Inhibitory control, circadian arousal, and age. In: Gopher, D., Koriat, A. (Eds.), Attention and Performance XVII: Cognitive Regulation of Performance: Interaction of Theory and Application. MIT Press., Cambridge, MA, pp. 653-6675.
    • Hedden, T., Gabrieli, J.D.E., 2004. Insights into the ageing mind: a view from cognitive neuroscience. Nat. Rev.: Neurosci. 5 (2), 87-96. http://dx.doi.org/10.1038/ nrn1323.
    • Heilman, K.M., Van Den Abell, T., 1980. Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 30, 327-330. http://dx.doi.org/10.1212/WNL.30.3.327.
    • Hilgetag, C.C., Théoret, H., Pascual-Leone, A., 2001. Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex. Nat. Neurosci. 4 (9), 953-957. http://dx.doi.org/10.1038/nn0901-953.
    • Holland, R., Crinion, J., 2011. Can tDCS enhance treatment of aphasia after stroke? Aphasiology 26 (9), 1169-1191. http://dx.doi.org/10.1080/ 02687038.2011.616925.
    • Horvath, J.C., Carter, O., Forte, J., 2014. Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be). Front. Syst. Neurosci. 8 (2). http://dx.doi.org/10.3389/fnsys.2014.00002.
    • Horvath J.C., Forte J. and Carter O., 2015a. Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review, Neuropsychologia, 66, 213-236, http://dx.doi.org/10.1016/j.neu ropsychologia.2014.11.021.
    • Horvath, J.C., Forte, J., Carter, O., 2015b. Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul. . http://dx.doi.org/10.1016/j. brs.2015.01.400
    • Hsu, T.Y., Tseng, P., Liang, W.K., Cheng, S.K., Juan, C.H., 2014. Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. NeuroImage 98, 306-313. http://dx.doi.org/10.1016/j.neuroimage.2014.04.069.
    • Huang, C.M., Polk, T.A., Goh, J.O., Park, D.C., 2012. Both left and right posterior parietal activations contribute to compensatory processes in normal aging. Neuropsychologia 50 (1), 55-66. http://dx.doi.org/10.1016/j. neuropsychologia.2011.10.022.
    • Hummel, F.C., Cohen, L.G., 2006. Non-invasive brain stimulation: A new strategy to improve neurorehabilitation after stroke? Lancet Neurology 5 (8), 708-712. http://dx.doi.org/10.1016/S1474-4422(06)70525-7.
    • Jacobson, L., Koslowsky, M., Lavidor, M., 2012. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp. Brain Res. 216 (1), 1-10. http: //dx.doi.org/10.1007/s00221-011-2891-9.
    • Jewell, G., McCourt, M., 2000. Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 38 (1), 93-110. http: //dx.doi.org/10.1016/S0028-3932(99)00045-7.
    • Jones, K.T., Berryhill, M.E., 2012. Parietal contributions to visual working memory depend on task difficulty. Front. Psychiatry 3 (81), 1-11. http://dx.doi.org/ 10.3389/fpsyt.2012.00081.
    • Jones, K.T., Gözenman, F., Berryhill, M.E., 2014. The strategy and motivational influences on the beneficial effect of neurostimulation: a tDCS and fNIRS study. NeuroImage 105, 238-247. http://dx.doi.org/10.1016/j.neuroimage.2014.11.012.
    • Kinsbourne, M., 1970. A model for the mechanism of unilateral neglect of space. Trans. Am. Neurol. Assoc. 95, 143-146.
    • Kinsbourne, M., 1977. Hemi-neglect and hemisphere rivalry. Adv. Neurol. 18, 41-49.
    • Kinsbourne, M., 1994. Mechanisms of neglect: implications for rehabilitation. Neuropsychol. Rehabil. 4, 151-153. http://dx.doi.org/10.1080/ 09602019408402274.
    • Ko, M.H., Han, S.H., Park, S.H., Seo, J.H., Kim, Y.H., 2008. Improvement of visual scanning after DC brain polarization of parietal cortex in stroke patients with spatial neglect. Neurosci. Lett. 448, 171-174. http://dx.doi.org/10.1016/j. neulet.2008.10.050v.
    • Krause, B., Cohen Kadosh, R., 2014. Not all brains are created equal: The relevance of individual differences in responsiveness to transcranial electrical stimulation. Front. Syst. Neurosci. 8, 1-12. http://dx.doi.org/10.3389/fnsys.2014.00025.
    • Lamar, M., Zonderman, A.B., Resnick, S., 2002. Contribution of specific cognitive processes to executive functioning in an aging population. Neuropsychology 16 (2), 156-162. http://dx.doi.org/10.1037/0894-4105.16.2.156.
    • López-Alonso, V., Cheeran, B., Rio-Rodriguez, D., Fernandez-del-Olmo, M., 2014. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 7 (3), 372-380. http://dx.doi.org/10.1016/j. brs.2014.02.004.
    • Macmillan, N.A., Creelman, C.D., 2005. Detection Theory: A User's Guide, 2nd ed Lawrence Erlbaum Associates, Mahwah, NJ.
    • Madden, D.J., Gottlob, L.R., Denny, L.L., Turkington, T.G., Provenzale, J.M., Hawk, T.C., Coleman, R.E., 1999. Aging and recognition memory: changes in regional cerebral blood flow associated with components of reaction time distributions. J. Cogn. Neurosci. 11, 511-520. http://dx.doi.org/10.1162/089892999563571.
    • Madden, D.J., Spaniol, J., Whiting, W.L., Bucur, B., Provenzale, J.M., Cabeza, R., White, L.E., Huettel, S.A., 2007. Adult age differences in the functional neuroanatomy of visual attention: a combined fMRI and DTI study. Neurobiol. Aging 28 (3), 459-476. http://dx.doi.org/10.1016/j.neurobiolaging.2006.01.005.
    • Malhotra, P., Coulthard, E.J., Husain, M., 2009. Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain 132 (3), 645-660. http://dx.doi.org/10.1093/brain/awn350.
    • Mattingley, J.B., Berberovic, N., Corben, L., Slavin, M.J., Nicholls, M.E., Bradshaw, J.L., 2004. The greyscales task: a perceptual measure of attentional bias following unilateral hemispheric damage. Neuropsychologia 42, 387-394. http://dx.doi. org/10.1016/j.neuropsychologia.2003.07.007.
    • Mattingley, J.B., Bradshaw, J.L., Nettleton, N.C., Bradshaw, J.A., 1994. Can task specific perceptual bias be distinguished from unilateral neglect? Neuropsychologia 32 (7), 805-817. http://dx.doi.org/10.1016/0028-3932(94)90019-1.
    • Meinzer, M., Lindenberg, R., Antonenko, D., Flaisch, T., Flöel, A., 2013. Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and function brain activity changes. J. Neurosci. 33 (30), 12470-12478. http://dx.doi.org/10.1523/JNEUROSCI.5743-12.2013.
    • Mesulam, M.M., 2002. Functional anatomy of attention and neglect: from neurons to networks. In: Karnath, H.-O., Milner, A.D., Vallar, G. (Eds.), The Cognitive and Neural Bases of Spatial Neglect. Oxford University Press, Oxford, pp. 33-45.
    • Milham, M.P., Erickson, K.I., Banich, M.T., Kramer, A.F., Webb, A., Wszalek, T., Cohen, N.J., 2002. Attentional control in the aging brain: Insights from an fMRI study of the Stroop task. Brain Cognit. 49, 277-296. http://dx.doi.org/10.1006/ brcg.2001.1501.
    • Milner, A.D., Brechmann, M., Pagliarini, L., 1992. To halve and to halve not: an analysis of line bisection judgements in normal subjects. Neuropsychologia 30, 515-526. http://dx.doi.org/10.1016/0028-3932(92)90055-q.
    • Miniussi, C., Harris, J.A., Ruzzoli, M., 2013. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci. Biobehav. Rev. 37, 1702-1712. http://dx. doi.org/10.1016/j.neubiorev.2013.06.014.
    • Morcom, A., Good, C.D, Frackowiak, R.S.J., Rugg, M.D., 2003. Age effects on the neural correlates of successful memory encoding. Brain 126, 213-229, doi: 0.1093/brain/awg020.
    • Nagamatsu, L., Munkacsy, M., Liu-Ambrose, T., Handy, T.C., 2013. Altered visualspatial attention to task-irrelevant information is associated with falls risk in older adults. Neuropsychologia 51, 3025-3032. http://dx.doi.org/10.1016/j. neuropsychologia.2013.10.002.
    • Nagamatsu, L.S., Carolan, P., Liu-Ambrose, T.Y.L., Handy, T.C., 2011. Age-related changes in the attentional control of visual cortex: a selective problem in the left visual hemifield. Neuropsychologia 49 (7), 1670-1678. http://dx.doi.org/ 10.1016/j.neuropsychologia.2009.05.022.
    • Nagamatsu, L.S., Liu-Ambrose, T.Y.L., Carolan, P., Handy, T.C., 2009. Are impairments in visual-spatial attention a critical factor for increased falls risk in seniors? An event-related potential study. Neuropsychologia 47 (13), 1-19. http://dx.doi. org/10.1016/j.neuropsychologia.2009.05.022.
    • Nielson, K.A., Langenecker, S.A., Garavan, H., 2002. Differences in the functional neuroanatomy of inhibitory control across the adult lifespan. Psychol. Aging 17, 56-71. http://dx.doi.org/10.1037//0882-7974.17.1.56.
    • Niemeier, M., Stojanoski, B., Greco, A.L., 2007. Influences of time and spatial frequency on the perceptual bias: evidence for competition between hemispheres. Neuropsychologia 45, 1029-1040. http://dx.doi.org/10.1016/j. neuropsychologia.2006.09.006.
    • Niemeier, M., Stojanoski, B., Singh, V.W.A., Chu, E., 2008. Paradoxical cross-over due to attention to high or low spatial frequencies. Brain Cognit. 67, 115-125. http: //dx.doi.org/10.1016/j.bandc.2007.12.002.
    • Nitsche, M.A., Paulus, W., 2000. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527 (3), 633-639. http://dx.doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x.
    • Nitsche, M.A., Paulus, W., 2001. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899-1901. http://dx.doi.org/10.1212/WNL.57.10.1899.
    • Park, D.C., Lautenschlager, G., Hedden, T., Davidson, N.S., Smith, A.D., Smith, P.K., 2002. Models of visuospatial and verbal memory across the adult life span. Psychol. Aging 17 (2), 299-320. http://dx.doi.org/10.1037//0882-7974.17.2.299.
    • Priori, A., 2003. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin. Neurophysiol. 114, 589-595. http://dx.doi.org/10.1016/S1388-2457(02)00437-6.
    • Raz, N., Lindenberger, U., Rodrigue, K.M., Head, D., Williamson, A., Dahle, C., Gerstorf, D., Acker, J.D., 2005. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb. Cortex 15 (11), 1676-1689. http://dx.doi.org/10.1093/cercor/bhi044.
    • Regolin, L., 2006. The case of the line-bisection: when both humans and chickens wander left. Cortex 42 (1), 101-103. http://dx.doi.org/10.1016/S0010-9452(08) 70330-7.
    • Reuter-Lorenz, P.A., Jonides, J., Smith, E., Hartley, A., Miller, A., Marshuetz, C., Koeppe, R.A., 2000. Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J. Cogn. Neurosci. 12, 174-187. http: //dx.doi.org/10.1162/089892900561814.
    • Rosano, C., Aizenstein, H., Cochran, J., Saxton, J., De Kosky, S., Newman, A.B., Kuller, L.H., Lopez, O.L., Carter, C.S., 2005. Functional neuroimaging indicators of successful executive control in the oldest old. Neuroimage 28, 881-889. http://dx. doi.org/10.1016/j.neuroimage.2005.05.059.
    • Salthouse, T.A., 1991. Mediation of adult age differences in cognition by reductions in working memory and speed of processing. Psychol. Sci. 2, 179-183. http://dx. doi.org/10.1037//0012-1649.29.4.722.
    • Salthouse, T.A., 1996. The processing speed theory of adult age differences in cognition. Psychol. Rev. 103, 403-428. http://dx.doi.org/10.1037/0033- 295X.103.3.403.
    • Schmitz, R., Peigneux, P., 2011. Age-related changes in visual pseudoneglect. Brain Cognit. 76, 382-389. http://dx.doi.org/10.1016/j.bandc.2011.04.002.
    • Schaie, K.W., 1996. Intellectual Development in Adulthood: The Seattle Longitudinal Study. Cambridge University Press, New York.
    • Singh, V.V.W., Stojanoski, Le, A., Niemeier, M., 2011. Spatial frequency-specific effects on the attentional bias: evidence for two attentional systems. Cortex 47, 547-556. http://dx.doi.org/10.1016/j.cortex.2010.03.006.
    • Sparing, R., Thimm, M., Hesse, M.D., Küst, J., Karbe, H., Fink, G.R., 2009. Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain 132, 3011-3020, doi: 10.1093/brain/awp154.
    • Spreng, R.N., Wojtowicz, M., Grady, C.L., 2010. Reliable differences in brain activity between young and old adults: a quantitative meta-analysis across multiple cognitive domains. Neurosci. Biobehav. Rev. 34, 1178-1194. http://dx.doi.org/ 10.1016/j.neubiorev.2010.01.009.
    • Stagg, C.J., Nitsche, M.A., 2011. Physiological basis of transcranial direct current stimulation. Neuroscientist 17 (1), 37-53. http://dx.doi.org/10.1177/ 1073858410386614.
    • Stam, C.J., Bakker, M., 1990. The prevalence of neglect: superiority of neuropsychological over clinical methods of estimation. Clin. Neurol. Neurosurg. 92, 229-235. http://dx.doi.org/10.1016/0303-8467(90)90025-Z.
    • Sunwoo, H., Kim, Y.H., Chang, W.H., Noh, S., Kim, E.M., Ko, M.H., 2013. Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect. Neurosci. Lett. 554, 94-98. http://dx.doi.org/10.1016/j. neulet.2013.08.064.
    • Szczepanski, S.M., Konen, C.S., Kastner, S., 2010. Mechanisms of spatial attention control in frontal and parietal cortex. J. Neurosci. 30 (1), 148-160. http://dx.doi. org/10.1523/JNEUROSCI.3862-09.2010.
    • Thiebaut de Schotten, M., Dell'Acqua, F., Forkel, S.J., Simmons, A., Vergani, F., Murphy, F., Catani, M., 2011. A lateralized brain network for visuospatial attention. Nat. Neurosci. 14 (10), 1245-1246. http://dx.doi.org/10.1038/nn.2905.
    • Thut, G., Nietzel, A., Brandt, S.A., Pascual-Leone, A., 2006. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J. Neurosci. 26 (37), 9494-9502. http: //dx.doi.org/10.1523/JNEUROSCI.0875-06.2006.
    • Townsend, J., Adamo, M., Haist, F., 2006. Changing channels: an fMRI study of aging and cross-modal attention shifts. NeuroImage 31, 1682-1692. http://dx.doi.org/ 10.1016/j.neuroimage.2006.01.045.
    • Tseng, Philip, Hsu, T.Y., Chang, C.F., Tzeng, O.J.L., Hung, D.L., Muggleton, N.G., Walsh, V., Liang, W.K., Cheng, S.K., Juan, C.H., 2012. Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. J. Neurosci. 32 (31), 10554-10561. http://dx.doi.org/10.1523/JNEUROSCI.0362-12.2012.
    • United Nations, Department of Economic and Social Affairs, Population Division, 2013. World Population Ageing 2013. ST/ESA/SER.A/348.
    • Vallar, G., Bolognini, N., 2011. Behavioural facilitation following brain stimulation: implications for neurorehabilitation. Neuropsychol. Rehabil. 21 (5), 618-649. http://dx.doi.org/10.1080/09602011.2011.574050.
    • Varnava, A., McCarthy, M., Beaumont, J.G., 2002. Line bisection in normal adults: direction of attentional bias for near and far space. Neuropsychologia 40, 1372-1378. http://dx.doi.org/10.1016/S0028-3932(01)00204-4.
    • Walsh, V.Q., 2013. Ethics and social risks in brain stimulation. Brain Stimul. 6 (5), 715-717. http://dx.doi.org/10.1016/j.brs.2013.08.001.
    • Weintraub, S., Mesulam, M., 1987. Right cerebral dominance in spatial attention: further evidence based on ipsilateral neglect. Arch. Neurol. 44, 621-625. http: //dx.doi.org/10.1001/archneur.1987.00520180043014.
    • Wiethoff, S., Hamada, M., Rothwell, J.C., 2014. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 7, 468-475. http: //dx.doi.org/10.1016/j.brs.2014.02.003.
    • Wingfield, A., Stine, E.A.L., Lahar, C.J., Aberdeen, J.S., 1988. Does the capacity of working memory change with age? Exp. Aging Res. 14, 103-107. http://dx.doi. org/10.1080/03610738808259731.
    • Wu, Y.J., Tseng, P., Chang, C.F., Pai, M.C., Hsu, K.S., Lin, C.C., Juan, C.H., 2014. Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Brain Cognit. 91, 87-94. http://dx.doi.org/10.1016/j.bandc.2014.09.002.
    • Zimerman, M., Hummel, F., 2010. Non-invasive brain stimulation: Enhancing motor and cognitive functions in healthy old subjects. Front. Aging Neurosci. 2, 1-12. http://dx.doi.org/10.3389/fnagi.2010.00149.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article