Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lawton, Scott P.; Hirai, Hirohisa; Ironside, Joe E.; Johnston, David A.; Rollinson, David (2011)
Publisher: BioMed Central Ltd.
Journal: Parasites & Vectors
Languages: English
Types: Article
Subjects: RC109-216, Review, Infectious and parasitic diseases, biological

Classified by OpenAIRE into

mesheuropmc: parasitic diseases


Blood flukes within the genus Schistosoma still remain a major cause of disease in the tropics and subtropics and the study of their evolution has been an area of major debate and research. With the advent of modern molecular and genomic approaches deeper insights have been attained not only into the divergence and speciation of these worms, but also into the historic movement of these parasites from Asia into Africa, via migration and dispersal of definitive and snail intermediate hosts. This movement was subsequently followed by a radiation of Schistosoma species giving rise to the S. mansoni and S. haematobium groups, as well as the S. indicum group that reinvaded Asia. Each of these major evolutionary events has been marked by distinct changes in genomic structure evident in differences in mitochondrial gene order and nuclear chromosomal architecture between the species associated with Asia and Africa. Data from DNA sequencing, comparative molecular genomics and karyotyping are indicative of major constitutional genomic events which would have become fixed in the ancestral populations of these worms. Here we examine how modern genomic techniques may give a more in depth understanding of the evolution of schistosomes and highlight the complexity of speciation and divergence in this group.

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Attwood SW, Fatih FA, Mondal MM, Alim MA, Fadjar S, Rajapakse RP, Rollinson D: A DNA sequence-based study of the Schistosoma indicum (Trematoda: Digenea) group: population phylogeny, taxonomy and historical biogeography. Parasitology 2007, 134:2009-2020.
    • 2. Davis GM: Evolution of prosobranch snails transmitting Asian Schistosoma; coevolution with Schistosoma: A review. Progress in Clinical Parasitology 1992, 3:145-204.
    • 3. Davis GM: Snail hosts of Asian Schistosoma infecting man: evolution and coevolution. In the Mekong Schistosome. Malacological Review 1980, 2:195-238.
    • 4. Agatsuma T: Origin and evolution of Schistosoma japonicum. Parasitol Int 2003, 52:335-340.
    • 5. Morgan JA, Dejong RJ, Snyder SD, Mkoji GM, Loker ES: Schistosoma mansoni and Biomphalaria: past history and future trends. Parasitology 2001, 123:211-228.
    • 6. Rollinson D, Kaukas A, Johnston DA, Simpson AJ, Tanaka M: Some molecular insights into schistosome evolution. Int J Parasitol 1997, 27:11-28.
    • 7. Agatsuma T, Iwagami M, Liu CX, Rajapakse RP, Mondal MM, Kitikoon V, Ambu S, Agatsuma Y, Blair D, Higuchi T: Affinities between Asian nonhuman Schistosoma species, the S. indicum group, and the African human schistosomes. J Helminthol 2002, 76:7-19.
    • 8. Webster BL, Southgate VR, Littlewood DT: A revision of the interrelationships of Schistosoma including the recently described Schistosoma guineensis. Int J Parasitol 2006, 36:947-955.
    • 9. Attwood SW, Panasoponkul C, Upatham ES, Meng XH, Southgate VR: Schistosoma ovuncatum n. sp. (Digenea: Schistosomatidae) from northwest Thailand and the historical biogeography of Southeast Asian Schistosoma Weinland, 1858. Syst Parasitol 2002, 51:1-19.
    • 10. Morgan JA, DeJong RJ, Kazibwe F, Mkoji GM, Loker ES: A newly-identified lineage of Schistosoma. Int J Parasitol 2003, 33:977-985.
    • 11. Majoros G, Dán A, Erdélyi KA: Natural focus of the blood fluke Orientobilharzia turkestanicum (Skrjabin, 1913) (Trematoda: Schistosomatidae) in red deer (Cervus elaphus) in Hungary. Vet Parasitol 2010, 170:218-223.
    • 12. Hanelt B, Brant SV, Steinauer ML, Maina GM, Kinuthia JM, Agola LE, Mwangi IN, Mungai BN, Mutuku MW, Mkoji GM, Loker ES: Schistosoma kisumuensis n. sp.(Digenea: Schistosomatidae) from murid rodents in the Lake Victoria Basin, Kenya and its phylogenetic position within the S. haematobium species group. Parasitology 2009, 136:987-1001.
    • 13. Snyder SD, Loker ES: Evolutionary relationships among the Schistosomatidae (Platyhelminthes: Digenea) and an Asian origin for Schistosoma. J Parasitol 2000, 86:283-288.
    • 14. Kane RA, Southgate VR, Rollinson D, Littlewood DT, Lockyer AE, Pagès JR, Tchuem Tchuentè LA, Jourdane J: A phylogeny based on three mitochondrial genes supports the division of Schistosoma intercalatum into two separate species. Parasitology 2003, 127:131-137.
    • 15. Lockyer AE, Olson PD, Ostergaard P, Rollinson D, Johnston DA, Attwood SW, Southgate VR, Horak P, Snyder SD, Le TH, Agatsuma T, McManus DP, Carmichael AC, Naem S, Littlewood DT: The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology 2003, 126:203-224.
    • 16. Snyder SD: Phylogeny and paraphyly among tetrapod blood flukes (Digenea: Schistosomatidae and Spirorchiidae). Int J Parasitol 2004, 34:1385-1392.
    • 17. Johnston DA, Dias Neto E, Simpson AJ, Rollinson D: Opening the can of worms: molecular analysis of schistosome populations. Parasitol Today 1993, 9:286-291.
    • 18. Johnston DA, Kane RA, Rollinson D: Small subunit (18S) ribosomal RNA gene divergence in the genus Schistosoma. Parasitology 1993, 107:147-156.
    • 19. Kane RA, Rollinson D: Repetitive sequences in the ribosomal DNA internal transcribed spacer of Schistosoma haematobium, Schistosoma intercalatum and Schistosoma mattheei. Mol Biochem Parasit 1994, 63:153-156.
    • 20. Loker ES, Brant SV: Diversification, dioecy and dimorphism in schistosomes. Trends Parasitol 2006, 22:521-528.
    • 21. Johnston DA: Genomes and genomics of parasitic flatworms. Parasitic Flatworms: molecular biology, biochemistry, immunology and physiology CAB International, Wallingford; 2006, 279-291.
    • 22. Littlewood DT, Lockyer AE, Webster BL, Johnston DA, Le TH: The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol Phylogenet Evol 2006, 39:452-67.
    • 23. Le TH, Humair PF, Blair D, Agatsuma T, Littlewood DT, McManus DP: Mitochondrial gene content, arrangement and composition compared in African and Asian schistosomes. Mol Biochem Parasit 2001, 117:61-71.
    • 24. Zarowiecki MZ, Huyse T, Littlewood DT: Making the most of mitochondrial genomes-markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes: Digenea). Int J Parasitol 2007, 37:1401-1148.
    • 25. Hirai H, Taguchi T, Saitoh Y, Kawanaka M, Sugiyama H, Habe S, Okamoto M, Hirata M, Shimada M, Tiu WU, Lai K, Upatham ES, Agatsuma T: Chromosomal differentiation of the Schistosoma japonicum complex. Int J Parasitol 2000, 30:441-452.
    • 26. Grossman AI, Short RB, Kuntz RE: Somatic chromosomes of Schistosoma rodhaini, S. mattheei, and S. intercalatum. J Parasitol 1981, 67:41-44.
    • 27. Hirai H, LoVerde PT: Triploid cells found in intramolluscan stages of Schistosoma mansoni. J Parasitol 1989, 75:800-802.
    • 28. Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Mashiyama ST, AlLazikani B, Andrade LF, Ashton PD, Aslett MA, Bartholomeu DC, Blandin G, Caffrey CR, Coghlan A, Coulson R, Day TA, Delcher A, DeMarco R, Djikeng A, Eyre T, Gamble JA, Ghedin E, Gu Y, Hertz-Fowler C, Hirai H, Hirai Y, Houston R, Ivens A, Johnston DA, Lacerda D, Macedo CD, McVeigh P, Ning Z, Oliveira G, Overington JP, Parkhill J, Pertea M, Pierce RJ, Protasio AV, Quail MA, Rajandream MA, Rogers J, Sajid M, Salzberg SL, Stanke M, Tivey AR, White O, Williams DL, Wortman J, Wu W, Zamanian M, Zerlotini A, Fraser-Liggett CM, Barrell BG, El-Sayed N: The genome of the blood fluke Schistosoma mansoni. Nature 2009, 460:352-358.
    • 29. Short RB: Presidential address: Sex and the single schistosome. J Parasitology 1983, 69:. 3-22.
    • 30. Grossman AI, Short RB, Cain GD: Karyotype evolution and sex chromosome differentiation in schistosomes (Trematoda, Schistosomatidae). Chromosoma 1981, 84:413-430.
    • 31. Hirai H, Hirata M, Aoki Y, Tanaka M, Imai HT: Chiasma analyses of parasite flukes, Schistosoma and Paragonimus (Trematoda), by using the chiasma distribution graph. Genes Genet Syst 1996, 71:181-188.
    • 32. Charlesworth B: The evolution of chromosomal sex determination. Novartis Found Symp 2002, 244:207-219.
    • 33. Ellegren H, Carmichael A: Multiple and independent cessation of recombination between avian sex chromosomes. Genetics 2001, 158:325-231.
    • 34. Ironside JE: No amicable divorce? Challenging the notion that sexual antagonism drives sex chromosome evolution. Bioessay 32:718-726.
    • 35. Charlesworth B: The evolution of sex chromosomes. Science 1991, 251:1030-1030.
    • 36. Charlesworth B: The evolution of chromosomal sex determination and dosage compensation. Curr Biol 1996, 6:149-162.
    • 37. Li L, Yu LY, Zhu XQ, Wang CR, Zhai YQ, Zhao JP: Orientobilharzia turkestanicum is grouped within African schistosomes based on phylogenetic analyses using sequences of mitochondrial genes. Parasitol Res 2008, 102:939-943.
    • 38. Despres L, Imbert-Establet D, Combes C, Bonhomme F: Molecular evidence linking hominid evolution to recent radiation of schistosomes (Platyhelminthes: Trematoda). Mol Phylogenet Evol 1992, 1:295-304.
    • 39. Amos W, Harwood J: Factors affecting levels of genetic diversity in natural populations. Philos Trans R Soc Lond B Biol Sci 1998, 353:177-186.
    • 40. Williams SA, Johnston DA: Helminth genome analysis: the current status of the filarial and schistosome genome projects. Filarial Genome Project. Schistosome Genome Project. Parasitol 1999, 118:19-38.
    • 41. Xiao N, Remais J, Brindley PJ, Qiu D, Spear R, Lei Y, Blair D: Polymorphic microsatellites in the human bloodfluke, Schistosoma japonicum, identified using a genomic resource. Parasite Vectors 2011, 4:13.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article