LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Escolano, Francisco; Curado, Manuel; Hancock, Edwin R. (2016)
Languages: English
Types: Other
Subjects:
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Alamgir, M., von Luxburg, U.: Shortest path distance in random k-nearest neighbor graphs. In: Proceedings of ICML'12 (2012)
    • 2. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of np-hard problems. Journal of Computer and System Sciences 58(1) 193-210 (1999)
    • 3. Batson, J.D., Spielman, D.A., Srivastava, N., Teng, S.: Spectral sparsification of graphs: theory and algorithms. Commun. ACM 56(8) 87-94 (2013)
    • 4. Benczu´r, A.A., Karger, D.R.: Approximating s-t minimum cuts in O(n2) time. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing 47-55 (1996)
    • 5. Cai, D., Chen, X.: Large scale spectral clustering via landmark-based sparse representation. IEEE Trans. Cybernetics 45(8) 1669-1680 (2015)
    • 6. Chen, J., Fang, H., Saad, Y.: Fast approximate knn graph construction for high dimensional data via recursive lanczos bisection. Journal of Machine Learning Research 10 1989-2012 (2012)
    • 7. Frieze, A.M., Kannan, R.: The regularity lemma and approximation schemes for dense problems. In: 37th Annual Symposium on Foundations of Computer Science, FOCS 96, 12-20 (1996)
    • 8. Hardt, M., Srivastava, N., Tulsiani, M.: Graph densification. In: Innovations in Theoretical Computer Science 2012, 380-392 (2012)
    • 9. Khoa, N.L.D., Chawla, S.: Large scale spectral clustering using approximate commute time embedding. CoRR abs/1111.4541 (2011)
    • 10. Vladymyrov, M., Carreira-Perpinan, M.A.: The Variational Nystrom method for large-cale spectral problems. ICML'16 211-220 (2016)
    • 11. Khoa, N.L.D., Chawla, S.: Large Scale Spectral Clustering Using Resistance Distance and Spielman-Teng Solvers. In: Ganascia, Jean-Gabriel, Lenca, Philippe and Petit, Jean-Marc (Eds): DS 2012, LNCS vol. 7569, 7-21 (2012)
    • 12. Koml´os, J., Shokoufandeh, A., Simonovits, M., Szemer´edi, E.: The regularity lemma and its applications in graph theory. In: Theoretical Aspects of Computer Science, Advanced Lectures 84-112 (2000)
    • 13. Liu, W., He, J., Chang, S.: Large graph construction for scalable semi-supervised learning. In: Proceedings of ICML'10 679 - 686 (2010)
    • 14. Liu, W., Mu, C., Kumar, S., Chang, S.: Discrete graph hashing. In: NIPS'14, 3419- 3427 (2014)
    • 15. Liu, W., Wang, J., Chang, S.: Robust and scalable graph-based semisupervised learning. Proceedings of the IEEE 100(9) 2624-2638 (2012)
    • 16. Liu, W., Wang, J., Kumar, S., Chang, S.: Hashing with graphs. In: Proceedings of ICML'11, 1-8 (2011)
    • 17. 16. Luo, Z., Ma, W., So, A.M., Ye, Y., Zhang, S.: Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine 27(3) 20-34 (2010)
    • 18. Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. IEEE TPAMI 29(11) 1873-1890 (2007)
    • 19. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM J. Comput. 40(6) 1913-1926 (2011)
    • 20. von Luxburg, U., Alamgir, M.: Density estimation from unweighted k-nearest neighbor graphs: a roadmap. In: NIPS'13 225-233 (2013)
    • 21. von Luxburg, U., Radl, A., Hein, M.: Getting lost in space: Large sample analysis of the resistance distance. In: NIPS'10 2622-2630 (2010)
    • 22. von Luxburg, U., Radl, A., Hein, M.: Hitting and commute times in large random neighborhood graphs. Journal of Machine Learning Research 15(1) 1751-1798 (2014)
    • 23. Toh, K.C., Todd M., Tutuncu, R.: SDPT3 - A MATLAB software package for semidefinite programming. Optimization methods and Software 11 545-581 (1998)
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article