LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Phillips, Darren C; Griffiths, Helen R (2003)
Languages: English
Types: Article
Subjects: Research Article
Ceramide (a sphingolipid) and reactive oxygen species are each partly responsible for intracellular signal transduction in response to a variety of agents. It has been reported that ceramide and reactive oxygen species are intimately linked and show reciprocal regulation [Liu, Andreieu-Abadie, Levade, Zhang, Obeid and Hannun (1998) J. Biol. Chem. 273, 11313-11320]. Utilizing synthetic, short-chain ceramide to mimic the cellular responses to fluctuations in natural endogenous ceramide formation or using stimulation of CD95 to induce ceramide formation, we found that the principal redox-altering property of ceramide is to lower the [peroxide](cyt) (cytosolic peroxide concentration). Apoptosis of Jurkat T-cells, primary resting and phytohaemagglutinin-activated human peripheral blood T-lymphocytes was preceded by a loss in [peroxide](cyt), as measured by the peroxide-sensitive probe 2',7'-dichlorofluorescein diacetate (also reflected in a lower rate of superoxide dismutase-inhibitable cytochrome c reduction), and this was not associated with a loss of membrane integrity. Where growth arrest of U937 monocytes was observed without a loss of membrane integrity, the decrease in [peroxide](cyt) was of a lower magnitude when compared with that preceding the onset of apoptosis in T-cells. Furthermore, decreasing the cytosolic peroxide level in U937 monocytes before the application of synthetic ceramide by pretreatment with either of the antioxidants N -acetyl cysteine or glutathione conferred apoptosis. However, N -acetyl cysteine or glutathione did not affect the kinetics or magnitude of ceramide-induced apoptosis of Jurkat T-cells. Therefore the primary redox effect of cellular ceramide accumulation is to lower the [peroxide](cyt) of both primary and immortalized cells, the magnitude of which dictates the cellular response.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Gamard, C., Dbaibo, G., Liu, B., Obeid, L. and Hannun, Y. (1997). Selective involvement of ceramide in cytokine-induced apoptosis. J . Biol. Chem. 272, 16474-16481.
    • 2. Liu, B., Andreieu-Abadie, N., Levade, T., Zhang, P., Obeid, L. and Hannun, Y. (1998). Glutathione regulation of neutral sphingomyelinase in Tumour necrosis factor-a induced cell death. J. Biol. Chem. 273, 11313-11320.
    • 3. Obeid, L., Linardic, C., Karolak, L. and Hannun, Y. (1993). Programmed cell death induced by ceramide. Science 259, 1769-1771.
    • 4. Verheij, M., Bose, R., Lin, X., Yao, B., Jarvis, W., Grant, S., Birrer, M., Szabo, E., Zon, L., Kyriakis, J., Haimovitz-Friedman, A., Fuks, Z. and Kolesnick, R. (1996). Requirement for ceramide initiated SAPK/JNK signaling in stress-induced apoptosis. Nature 380, 75-79.
    • 5. Andrieu, N., Salvayre, R. and Levade, T. (1994). Evidence against involvement of the acid lysosomal sphingomyelinase in the tumor-necrosis-factor- and interleukin-1-induced sphingomyelin cycle and cell proliferation in human fibroblasts. Biochem J. 303, 341-345.
    • 6. Cifone, M., De Maria, R., Roncaioli, P., Rippo, M., Azuma, M., Lanier, L., Santoni, A. and Testi, R. (1993). Apoptotic signalling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J. Exp. Med. 177, 1547-1552.
    • 7. Gulbins, E., Bissonnette, R., Mahboubi, A., Martin, S., Nishioka, W., Brunner, T., Baier, G., Baier-Bitterlich, G., Byrd, C., Lang, F., Kolesnick, R., Altman, A. and Green, D. (1995). FAS-induced apoptosis is mediated via a ceramide-initiated RAS signalling pathway. Immunity 2, 341-351.
    • 8. Tepper, A., Boesen-De Cock, J.G.R., De Vries, E., Borst, J. And Van Blitterswijk, W.J. (1997). CD95/Fas-induced ceramide formation proceeds with slow kinetics and is not blocked by caspase-3/CPP32 inhibition. J. Biol. Chem. 272, 24308-24312.
    • 9. Santana, P., Peña, L., Haimovitz-Friedman, A., Martin, S., Green, D., Mcloughlin, M., Cordon-Cardo, C., Schuchman, E., Fuks, Z. and Kolesnick, R. (1996). Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86, 189-199.
    • 10. Boland, M., Foster, S. and O'neill, L. (1997). Daunorubicin activates NFκB and induces κB-dependent gene expression in HL-60 promyelocytic and Jurkat T lymphoma cells. J. Biol. Chem. 272, 12952-12960.
    • 11. Bose, R., Verheij, M., Haimovitz-Friedman, A., Scotto, K., Fuks, Z. and Kolesnick, R. (1995). Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82, 405-414.
    • 12. Mansat-De Mas, V., Bezombes, C., Quillet-Mary, A., Bettaieb, A., De Thonel D'orgeix, A., Laurent, G. and Jaffrézou, J.-P. (1999). Implication of radical oxygen species in ceramide generation, c-Jun terminal kinase activation and apoptosis induced by daunorubicin. Mol. Pharm. 56, 867-874.
    • 13. Mackichan, M. and Defranco, A. (1999). Role of ceramide in lipopolysacharide (LPS)- induced signalling. J. Biol. Chem. 274, 1767-1775.
    • 14. Hanna, A., Chan, E., Xu, J., Stone, J. and Brindley, D. (1999). A novel pathway for Tumour necrosis factor-α and ceramide signaling involving sequential activation of tyrosine kinase p21ras, and phosphatidylinositol 3-kinase. J. Biol. Chem. 274, 12722-12729.
    • 15. Dbaibo ,G.S., Pushkareva, M.Y., Jayadev, S., Schwarz, J.K., Horowitz, J.M., Obeid, L.M., Hannun, Y.A.(1995). Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proc Natl Acad Sci U S A. 92, 1347-1351.
    • 16. Jayadev, S., Liu, B., Bielawska, A., Lee, J., Nazaire, F., Pushkareva, M., Obeid, L. and Hannun, Y. (1995). Role of ceramide in cell cycle arrest. J . Biol. Chem. 270, 2047-2052.
    • 17. Ragg, S., Kaga, S., Berg, K. & Ochi, A. (1998). The mitogen-activated protein kinases pathway inhibits ceramide-induced terminal differentiation of a human monoblastic leukemia cell line, U937. J. Immunol. 161, 1390-1398.
    • 18. Venable, M., Lee, J., Smyth, M., Bielawska, A. and Obeid, L. (1995). Role of ceramide in cellular senescence. J. Biol. Chem. 270, 30701-30708.
    • 19. Liu, B. and Hannun, Y. (1997). Inhibition of neutral magnesium-dependent sphingomyelinase by glutathione. J. Biol. Chem. 272, 16281-16287.
    • 20. Sawada, M., Nakashima, S., Kiyono, T., Yamada, J., Hara, S., Nakagawa, M., Shinoda, J. and Sakai, N. (2002). Acid sphingomyelinase activation requires caspase-8 but not p53 nor reactive oxygen species during Fas-induced apoptosis in human glioma cells. Exp. Cell Res. 273, 157-168.
    • 21. García-Ruiz, C., Colell, A., Mari, M., Morales, A. and Fernández-Checa, J. (1997). Direct effect of ceramide in the mitochondrial electron transport chain leads to generation of reactive oxygen species. J. Biol. Chem. 272, 11369-11377.
    • 22. Quillet-Mary, A., Jaffrézou, J.-P. , Mansat, V., Bordier, C., Naval, J. and Laurent, G. (1997). Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J . Biol. Chem. 272, 21388-21395.
    • 23. Phillips, D.C., Allen, K. and Griffiths, H.R. (2002). Synthetic ceramides induce growth arrest or apoptosis by altering cellular redox status with differing kinetics. Arch. Biochem. Biophys. 407, 15-24.
    • 24. Schulze-Osthoff, K., Bakker, A., Vanhaesebroeck, B., Beyaert, R., Jacob, W. and Friers, W. (1992). Cytotoxic activity of tumour necrosis factor is mediated by early damage of mitochondrial functions. J . Biol. Chem. 267, 5317-5323.
    • 25. Lee, B. and Um, H.-D. (1999). Hydrogen peroxide suppresses U937 cell death by two different mechanisms depending on its concentration. Exp. Cell Res. 248, 430-438.
    • 26. Fang, W., Rivard, J.J., Ganser, J., Lebien, T.W., Nath, K.A., Mueller, D.L. and Behrens, T.W. (1995). Bcl-xL rescues WEHI 231 B lymphocytes from oxidant-mediated death following diverse apoptotic stimuli. J. Immunol. 155, 66-75.
    • 27. Nicolletti, I., Migliorati,G, Pagliaccii, M., Grignani, F. and Riccardi, C. (1991). A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271-279.
    • 28. Bass, D., Parce, J., Dechatelet, L., Szejda, P., Seeds, M. and Thomas, M. (1983). Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol. 130, 910-917.
    • 29. Tietze, F. (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 27, 502-522.
    • 30. Smith, P., Krohn, R., Hermanson, G., Mallia, A., Gartner, F., Provenzano, M., Fujimoto, E., Goeke, N., Olson, B. and Klenk, D. Measurement of protein using bicinchoninic acid. (1985). Anal. Biochem. 150, 76-85.
    • 31. Bligh, E. and Dyer, W. (1959). A rapid method of total lipid extraction. Can. Biochem. J. Phyiol. 37, 911-917.
    • 32. Preiss, J., Loomis, C., Bishop, W., Stein, R., Niedel, J. and Bell, R. (1986). Quantitative measurement of sn-1,2-diacylglcerols present in platelets, hepatocytes, and ras- and sistransformed normal rat kidney cells. J. Biol. Chem. 261, 8597-8600.
    • 33. Bielawska, A., Perry, D. and Hannun, Y. (2001). Determination of ceramides and diglycerides by the diglyceride kinase assay. Anal. Biochem. 298, 141-150.
    • 34. Ghibelli, L., Fanelli, C., Rotilio, G., Lafavia, E., Coppola, S., Colussi, C., Civitareale, P. and Ciriolo, M. (1998). Rescue of cells from apoptosis by inhibition of active GSH extrusion. FASEB J. 12, 479-486.
    • 35. Pani, G., Bedogni, B., Colavitti, R., Anzevino, R., Borrello, S., Galeotti, T. (2001). Cell compartmentalization in redox signaling. IUBMB Life 52, 7-16
    • 36. Hampton, M.B., Stamenkovic, I. And Winterbourn, C.C. (2002) Interaction with substrate sensitises caspase-3 to inactivation by hydrogen peroxide. FEBS letts. 517, 229-232.
    • 37. Lee, W-R., Shen, S-G., Lin, H-Y., Hou, W-C., Yong, L-L., Chen, Y-C. (2002) Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca(2+)-dependent endonuclease. Biochem. Pharmacol. 63, 225-236.
    • 38. Rota C., Chignell C.F, Mason R.P. (1999). Evidence for free radical formation during the oxidation of 2'-7'-dichlorofluorescin to the fluorescent dye 2'-7'-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic Biol Med. 27, 873-881.
    • 39. Burkitt M.J., Wardman P. (2001). Cytochrome C is a potent catalyst of dichlorofluorescin oxidation: implications for the role of reactive oxygen species in apoptosis. Biochem Biophys Res Commun. 282, 329-333.
    • 40. Hannun, Y.A. and Luberto, C. (2000) Ceramide in the eukaryotic stress response. Trends Cell Biol. 10, 73-80.
    • 41. Mengubas, K., Fahey, A., Lewin, J., Mehta, A., Hoffbrand, A. and Wickremasinghe, R. (1999). Killing of T lymphocytes by synthetic ceramide is by a nonapoptotic mechanism and is abrogated following mitogenic activation. Exp. Cell Res. 249, 116-122.
    • 42. Schulze-Osthoff, K., Krammer, P.H., Droge, W. (1994). Divergent signalling via APO1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J. 13, 4587-4596.
    • 43. Um, H.-D., Orenstein, J. and Wahl, S. (1996). Fas mediated apoptosis in human monocytes by a reactive oxygen intermediate dependent pathway. J. Immunol. 156, 3469- 3477.
    • 44. Suzuki, Y., Ono, Y. and Hirabayashi, Y. (1998). Rapid and specific reactive oxygen 0.5
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article